
Advanced Object Oriented
Programming

EECS2030

Section M

1

2

public class SimplePoint2 {

public float x;

public float y;

/**

* Sets the x and y coordinate of the point to the argument

* values.

*

* @param x the x coordinate of the point

* @param y the y coordinate of the point

*/

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

this.x : the field named x of this point
this.y : the field named y of this point
x : the parameter named x of the constructor
y : the parameter named y of the constructor

3

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

64 client

p

600 SimplePoint2 object

x

y

700 SimplePoint2
constructor

this 600a

x -1.0f

y 1.5f

1. new allocates memory for a

SimplePoint2 object

2. the SimplePoint2 constructor is

invoked by passing the memory

address of the object and the

arguments -1.0f and 1.5f to the

constructor

3. the constructor runs, setting the

values of the fields this.x and

this.y

4. the value of p is set to the

memory address of the

constructed object

-1.0f

1.5f

600a

fields

parameters

this

In our constructor

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

there are parameters with the same names as fields
when this occurs, the parameter has precedence
over the field.

we say that the parameter shadows the field, when
shadowing occurs you must use this to refer to the
field

4

Custom constructors

Adding the constructor
SimplePoint2(float x,
float y) allows the client to
simplify their code.

5

6

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2();

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2();

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

Create p SimplePoint2 object

Set the values for p SimplePoint2 object

Create q SimplePoint2 object

Copy values from p SimplePoint2 object

Test if p and q objects are equal to each
other

7

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2(p.x, p.y);

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

Revised version
using custom
constructor

Copy constructor

A copy constructor initializes the
state of an object by copying the
state of another object (having the
same type)
it has a single parameter that is the
same type as the class

8

9

public class SimplePoint2 {

public float x;

public float y;

/**

* Sets the x and y coordinate of this point by copying

* the x and y coordinate of another point.

*

* @param other a point to copy

*/

public SimplePoint2(SimplePoint2 other) {

this.x = other.x;

this.y = other.y;

}

Copy constructor

Adding a copy constructor allows
the client to simplify their code

10

11

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2(p.x, p.y);

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

12

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2(p);

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

Avoiding Code Duplication

Notice that the constructor bodies are
almost identical to each other
all three constructors have 2 lines of code

all three constructors set the x and y coordinate
of the point

Whenever you see duplicated code you
should consider moving the duplicated code
into a method

In this case, one of the constructors already
does everything we need to implement the
other constructors…

13

Constructor chaining

A constructor is allowed to invoke another
constructor

When a constructor invokes another constructor it

is called constructor chaining

To invoke a constructor in the same class you use
the this keyword
if you do this then it must occur on the first line of the
constructor body
but you cannot use this in a method to invoke a

constructor

We can re-write two of our constructors to use
constructor chaining...

14

invokes

invokes

15

public class SimplePoint2 {

public float x;

public float y;

public SimplePoint2() {

this(0.0f, 0.0f);

}

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

public SimplePoint2(SimplePoint2 other) {

this(other.x, other.y);

}

Objects

Objects are instances of
classes

Are allocated on the heap
by using the new operator

Constructor is invoked
automatically on the new
object.

16

Counter c = new Counter();

Date d1 = new Date(2016, 9, 23);

Person p = new Person(“John”,”Smith”);

CODE

STATIC Area

STACK

HEAP

Two variables refer to a single object

17

MyDate date1 = new MyDate(20, 6, 2000);

MyDate date2 = date1;

Interesting Fact about Constructors

The constructors can call each other using
the special this keyword.

It is considered a good practice to chain
constructors in such a way as it reduces code
duplication and basically leads to having
single initialization entry point.

As an example, let us add another
constructor with only one argument.

18

public ConstructorWithArguments(final String arg1) {

this(arg1, null);

}

The this Reference

Usage:
To resolve ambiguity between
instance variables and parameters

To pass the current object as a
parameter to another method.

19

20

public class MyDate{

private int day = 26;

private int month = 9;

private int year = 2016;

public MyDate(int day, int month, int year){

this.day = day;

this.month = month;

this.year = year;

}

public MyDate(MyDate date){

this.day = date.day;

this.month = date.month;

this.year = date.year;

}

public MyDate creteNextDate(int moreDays){

MyDate newDate = new MyDate(this);

//... add moreDays

return newDate;

}

}

Initialization Blocks
Java has yet another way to provide initialization logic using

initialization blocks. This feature is rarely used.

The initialization block might be treated as anonymous no-arg
constructor.

But initialization blocks do not replace the constructors

 Some classes may have multiple initialization blocks and they all
will be called in the order they are defined in the code.

But, it is very important to mention that initialization blocks are
always called before any constructor.

21

public class InitializationBlock {

{

// initialization code here

}

}

public class InitializationBlocks {

{

// initialization code here

}

{

// initialization code here

}

}

Static initialization
Java also supports class-level initialization
constructs called static initializers.
There are very similar to the initialization blocks
except for the additional static keyword.

A class can have any number of static initializer
blocks in the class definition and they will be
executed in the order in which they appear in the
code.

22

public class StaticInitializationBlock {

static {

// static initialization code here

}

}

Methods

Basics

23

Methods

24

A method performs some sort of computation

A method is reusable

anyone who has access to the method can use
the method without copying the contents of the
method

anyone who has access to the method can use
the method without knowing the contents of the
method

Methods are described by their API (application
program interface); for example:

https://www.eecs.yorku.ca/course_archive/2017
-18/W/2030Z/lectures/doc/week01/

https://www.eecs.yorku.ca/course_archive/2017-18/W/2030Z/lectures/doc/week01/

Example API method entry

25

Method header

The first line of a method declaration is
sometimes called the method header

public static boolean isBetween(int min,int max,int value)

26

modifiers return type name parameter list

Method parameter list

The parameter list is the list of types and
names that appear inside of the parentheses

public static boolean
isBetween(int min, int max, int value)

The names in the parameter list
must be unique
i.e., duplicate parameter names are
not allowed

27

parameter list

Method signature

Every method has a signature
the signature consists of the method
name and the types in the parameter list

public static boolean isBetween(int min,
int max,
int value)

has the following signature

isBetween(int, int, int)

28

name number and types of parameters

signature

Examples - Method signature
Other examples from java.lang.String
headers
String toUpperCase()
char charAt(int index)
int indexOf(String str, int fromIndex)
void getChars(int srcBegin, int srcEnd,
char[] dst, int dstBegin)

signatures
toUpperCase()
charAt(int)
indexOf(String, int)
getChars(int, int, char[], int)

29

Method signature must be unique

Method signatures in a class must
be unique

We can introduce a second method
in the same class:

public static boolean

isBetween(double min, double max,
double value)

30

Method overloaded

Two or methods with the same name but
different signatures are said to be overloaded

public static boolean

isBetween(int min, int max, int value)

public static boolean

isBetween(double min, double max, double
value)

31

Method return types

All Java methods return nothing
(void) or a single type of value

So, method

public static boolean

isBetween(double min, double max,
double value)

has the return type boolean
32

Methods

Preconditions and postconditions

33

34

You are the head of a programming team and you want one

of your programmers to write a function for part of a

project.

HERE ARE

THE REQUIREMENTS

FOR A FUNCTION THAT I

WANT YOU TO

WRITE.

I DON'T CARE

WHAT METHOD THE

FUNCTION USES,

AS LONG AS THESE

REQUIREMENTS

ARE MET.

Client vs. Supplier – programming concept

A supplier implements/provides a service (also called
implementer)

A client uses a service provided by a given supplier.

The client must follow certain instructions to obtain
the service.

If instructions are followed, the client would expect
that the service does what is required.

The client does not care how the supplier
implements it.

There is a contract between two parties, violated if:

The instructions are not followed. [Client’s fault]

Instructions followed, but service not satisfactory. [
Supplier’s fault] 35

Preconditions and postconditions

Precondition:
a condition that the client must ensure is
true immediately before a method is
invoked/called.

Postcondition:
a condition that the method must ensure is
true immediately after the method is
finished.

36

Preconditions
A method precondition is a condition that
the client must ensure is true immediately
before invoking a method

if the precondition is not true, then the
client has no guarantees of what the
method will do.

For static methods, preconditions are
conditions on the values of the arguments
passed to the method

you need to carefully read the API to
discover the preconditions

37

38

precondition

39

precondition

precondition

Preconditions?

Preconditions

If a method has a parameter that has
reference type then it is almost always
assumed that a precondition for that
parameter is that it is not equal to null

Reminders:
reference type means “not primitive
type”

null means “refers to no object”

primitive types are never equal to
null

40

Postconditions

A method postcondition is a condition that
the method must ensure is true immediately
after the method is finished

if the postcondition is not true, then
there is something wrong with the
implementation of the method.

For static methods, postconditions are:
conditions on the arguments after the
method finishes

conditions on the return value.
41

42

postcondition

Postconditions?

43

postcondition

postcondition

Postconditions?

Always make sure the precondition is valid . . .

The programmer who calls the
function is responsible for ensuring
that the precondition is valid when
the function is invoked/called.

44

AT THIS POINT, MY

PROGRAM CALLS YOUR

FUNCTION, AND I MAKE

SURE THAT THE

PRECONDITION IS

VALID.

. . . so the postcondition becomes true at the
function’s end.

The programmer who writes the function
counts on the precondition being valid, and
ensures that the postcondition becomes
true at the function’s end.

45

THEN MY FUNCTION WILL EXECUTE,
AND WHEN IT IS DONE, THE

POSTCONDITION WILL BE TRUE.

I GUARANTEE IT.

Always
When you write a function, you

should make every effort to detect

when a precondition has been

violated.

If you detect that a precondition
has been violated, then print an
error message and halt the
program.

46

Methods

Implementation

47

48

Methods and classes

In Java every method must be
defined inside of a class

We will try to implement our
method so that it matches its API:
the method is inside the class named
Test2F

the class Test2F is inside the
package eecs2030.test2

49

50

package eecs2030.test2;

public class Test2F {

}

Method body

A method implementation
consists of:
the method header that includes
method signature.

a method body

the body is a sequence of Java
statements inside of a pair of
braces { }

51

52

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

}

}

the method header that includes method
signature

Methods with parameters
If a method has parameters, then you can use the
parameter names as variables inside your method

you cannot create new variables inside the
method that have the same name as a
parameter

you cannot use the parameters outside of the
method

we say that the scope of the parameters is the
method body

You may create additional variables inside your
method if you wish
we will create a variable to store the return value of the method

53

54

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

boolean result = true;

}

}

55

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

boolean result = true;

if (value <= min) {

result = false;

}

if (value >= max) {

result = false;

}

}

}

Methods with return values

If the method header says that a
type is returned, then the method
must return a value having the
advertised type back to the client

You use the keyword return to
return the value back to the client

56

57

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

boolean result = true;

if (value <= min) {

result = false;

}

if (value >= max) {

result = false;

}

return result;

}

}

Method return values

A method stops running
immediately if a return statement is
run
this means that you are not allowed to
have additional code if a return
statement is reached

however, you can have multiple
return statements

58

59

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

if (value <= min) {

return false;

// code not allowed here

}

if (value >= max) {

return false;

// code not allowed here

}

return true;

// code not allowed here

}

}

Alternative implementations

There are many ways to implement this
particular method

60

61

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

if (value <= min || value >= max) {

return false;

}

return true;

}

}

62

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

if (value > min && value < max) {

return true;

}

return false;

}

}

63

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

boolean result = value > min && value < max;

return result;

}

}

64

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

return value > min && value < max;

}

}

65

66

package eecs2030.test2;

import java.util.List;

public class Test2F {

// implementation of isBetween not shown

public static int min2(List<Integer> t) {

}

}

67

package eecs2030.test2;

import java.util.List;

public class Test2F {

// implementation not shown

public static int min2(List<Integer> t) {

if (t.size() != 2) {

throw new IllegalArgumentException("list size != 2");

}

int first = t.get(0);

int second = t.get(1);

}

}

Check the size of list
Fetch the first and
second elements
Still not complete

68

package eecs2030.test2;

import java.util.List;

public class Test2F {

// implementation not shown

public static int min2(List<Integer> t) {

if (t.size() != 2) {

throw new IllegalArgumentException("list size != 2");

}

int first = t.get(0);

int second = t.get(1);

if (first < second) {

return first;

}

return second;

}

}

References
https://docs.oracle.com/javase/10/docs/api/overview-summary.html

https://www.eecs.yorku.ca/course_archive/ [look for EECS 2030]

69

https://docs.oracle.com/javase/10/docs/api/overview-summary.html
https://www.eecs.yorku.ca/course_archive/

