
Advanced Object Oriented 
Programming

EECS2030

Section M

1



Organization of a 
Java Program

Packages, classes, fields, 
and methods

2



Organization of a Typical Java Program

one or more files

zero or one package 
name

zero or more import 
statements

one class

zero or more fields 
(class variables)

zero or more more
constructors

zero or more methods
3



Packages

Packages are used to organize 
Java classes into namespaces

Packages are use to organize 
related classes and interfaces
e.g., all of the Java API classes are 
in the package named java

4

package  directory (folder)

class  file



General Overview of Java Packages API 

javax.swing: classes dealing with 
the development of GUIs. 

java.lang: essential classes 

required by the Java language. 

java.text: facilities for formatting 
text output. 

java.util: classes for 
storing/accessing collections of objects. 

java.net: for network 
communication. 5



Eclipse – Packages overview 

6

project folder

project sources folder

eecs2030 folder

lab0 folder

https://docs.oracle.com/javase/specs/jls/se10/html/jls-7.html

To put a class into a package, one uses the "package" statement

https://docs.oracle.com/javase/specs/jls/se10/html/jls-7.html


The package statement

7

package <top_pkg_name>[.<sub_pkg_name>]*;

Syntax

package java.lang;

public class String{

…}

Example

Statement at the beginning of the source file

Only one package declaration per source file

If no package name is declared → the class is 

placed into the default package



The import statement

8

import <pkg_name>[.<sub_pkg_name>]*.*;

Syntax

import java.util.List;

import java.io.*;

Example 

Precedes all class declarations

Tells the compiler where to find 

classes



Importing a package
import packageName.*; // all classes

import packageName.className;// one class

9



Notes on the import statement
Import ONLY imports public classes from the specified 
package
Classes which are not public cannot be 

referenced from outside their package.

There is no way to "import all classes except one"
import either imports a single class or all 

classes within the package

Note: importing has no runtime or 

performance implications.  It is only 

importing a namespace so that the compiler 

can resolve class names.

Import statements must appear at the top of the file 
after the package statement and before any class or 
interface definitions.

10



Objects in JAVA 

Basics

11



In Java

Class: Is a user-defined type
Describes the data (attributes)

Also called Variables, instance 
variables, attributes, fields.

Defines the behavior (methods)

Instances of a class are objects

12



Declaring Classes

13

Syntax

Example 



Overview 

An object can contain variables as 
well as methods. 

Variables and methods are called 
members of class.

Note: Variable in an object is called 
a field, data, attributes or instance
variables.

14



Declaring Attributes/fields

15

Syntax
<modifier>* <type> <attribute_name>[= <initial_value>];

Example 



Generally, fields are defined as 
private so they can’t be seen from 
outside the class.

May add getter methods (functions) 
and setter methods (procedures) to 
allow access to some or all fields.

We use constructors, to initialize 
fields of a new object during 
evaluation of a new-expression.

16



Non-static classes

17



Utility class

A utility class has features (fields 
and methods) that are all static. 
therefore, you do not need objects to use 
those features

a well implemented utility class should 
have a single, empty private 
constructor to prevent the creation of 
objects. ( more detail later)

18



Non-static classes

Most Java classes are not utility 
classes
they are intended to be used to create 
to objects

each object has its own copy of all 
non-static fields

it is also useful to imagine that 
each object has its own copy of all 
non-static methods

19



Why objects?

Each object has its own copy of all 
non-static fields
this allows objects to have their own state
in Java the state of an object is the set of 
current values of all of its non-static fields

20



Object-oriented programming in 
Java:
Use classes to define templates

Use objects to instantiate classes

At runtime, create objects and call 
methods on objects, to simulate

interactions between real-life 
entities.

21



Implementing classes

22

Many classes represent kinds of values
 examples of values: name, date, colour, 

mathematical point or vector

 Java examples: String, Date, 
Integer

When implementing a class you need to 
choose appropriate fields to represent 
the state of each object



23

Consider implementing a class 
that represents 2-dimensional 
points
a possible implementation would 

have:
a field to represent the x-coordinate

of the point

a field to represent the y-coordinate
of the point



24

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>SimplePoint2D</code> instance has a

* public x and y coordinate that can be directly accessed

* and modified.

* 

* @author EECS2030 Winter 2016-17

*

*/

public class SimplePoint2 {

public float x;

public float y;

}

public class: any client 

can use this class

public fields: any client 

can use these fields by 

name

Note: Client is any class with its main method 

using this class



Using SimplePoint2

Even in its current form, we can 
use SimplePoint2 to create and 
manipulate point objects

25



26

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2();

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

}

 Notice that printing a point is somewhat 

inconvenient
 we have to manually compute a string 

representation of the point



Using SimplePoint2

Initializing the coordinates of the point 
is somewhat inconvenient
we have to manually set the x and y 
coordinates

We get unusual results when using 
equals

27



28

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2();

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2();

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}



Encapsulation

We can add features to SimplePoint2
to make it easier to use

We can add constructors that set the 
values of the fields of a SimplePoint2
object when it is created

We can add methods that use the fields
of SimplePoint2 to perform some sort 
of computation (like compute a string 
representation of the point)

29



In object oriented programming 
the term encapsulation means 
bundling data and methods that 
use the data into a single unit
That involves enclosing an object 
with a kind of “protective bubble” 
so that it cannot be accessed or 
modified without proper 
permission. 

30



Constructors

The purpose of a constructor is to 
initialize the state of an object
it should set the values of all of the non-
static fields to appropriate values

A constructor:
must have the same name as the class

never returns a value (not even void)
constructors are not methods

can have zero or more parameters

31



Implicit (Generated) Constructor
Java allows to define a class without any 
constructors but it does not mean the class will 
not have any.

This class has no constructor but Java compiler 
will generate one implicitly and the creation of new 
class instances will be possible using new
keyword.

32

public class NoConstructor {

}

public static void main(String[] args) {
final NoConstructor noConstructorInstance = new NoConstructor();

}



Declaring Constructors

33

[<modifier>]<class_name>( <argument>*){

<statement>*

}

Syntax

public class Date 

{

private int year, month, day;

public Date( int y, int m, int d) {

if( verify(y, m, d) ){

year = y; month = m; day = d;

}

}

private boolean verify(int y, int m, int d){

//...

}}

Example 



Default constructor

The default constructor has zero 
parameters

The default constructor 
initializes the state of an object to 
some well defined state chosen by 
the implementer

34



35

public class SimplePoint2 {

public float x;

public float y;

/**

* The default constructor. Sets both the x and y coordinate

* of the point to 0.0f.

*/

public SimplePoint2() {

this.x = 0.0f;

this.y = 0.0f;

}
Inside a constructor, the keyword

this is a reference to the object

that is currently being initialized.



The default constructor takes no argument

The default constructor's body is empty

36

public class Date {

private int year, month, day;

public Date( ){

}

}



Constructors without Arguments
The constructor without arguments (or no-
arg constructor) is the simplest constructors.

This constructor will be called once new 
instance of the class is created using the 
new keyword.

37

public class NoArgConstructor {

public NoArgConstructor() {

// Constructor body here

}

}

final NoArgConstructor noArgConstructor = 

new NoArgConstructor();



Constructors with Arguments
The constructors with arguments are the most
interesting and useful way to parameterize new 
class instances creation. 
The following example defines a constructor with two 
arguments.

In this case, when class instance is being created using 
the new keyword, both constructor arguments should 
be provided.

38

public class ConstructorWithArguments {

public ConstructorWithArguments(final String arg1,final 

String arg2) {

// Constructor body here

}

final ConstructorWithArguments constructorWithArguments =

new ConstructorWithArguments( "arg1", "arg2" );



Custom constructors

A class can have multiple constructors 
but the signatures of the constructors 
must be unique
i.e., each constructor must have a unique 
list of parameter types

It would be convenient for clients if 
SimplePoint2 had a constructor that 
let the client set the x and y coordinate 
of the point

39



40

public class SimplePoint2 {

public float x;

public float y;

/**

* Sets the x and y coordinate of the point to the argument

* values.

* 

* @param x the x coordinate of the point

* @param y the y coordinate of the point

*/

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

this.x : the field named x of this point
this.y : the field named y of this point
x : the parameter named x of the constructor
y : the parameter named y of the constructor



41

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

64 client

p

600 SimplePoint2 object

x

y

700 SimplePoint2
constructor

this 600a

x -1.0f

y 1.5f

1. new allocates memory for a 

SimplePoint2 object

2. the SimplePoint2 constructor is 

invoked by passing the memory 

address of the object and the 

arguments -1.0f and 1.5f to the 

constructor

3. the constructor runs, setting the 

values of the fields this.x and 

this.y

4. the value of p is set to the 

memory address of the 

constructed object

-1.0f

1.5f

600a

fields

parameters



this

In our constructor 

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

there are parameters with the same names as fields
when this occurs, the parameter has precedence 
over the field.

we say that the parameter shadows the field, when 
shadowing occurs you must use this to refer to the 
field

42



References 
https://docs.oracle.com/javase/10/docs/api/overview-summary.html

https://www.eecs.yorku.ca/course_archive/ [look for EECS 2030]

43

https://docs.oracle.com/javase/10/docs/api/overview-summary.html
https://www.eecs.yorku.ca/course_archive/

