YOIiK
LASSONDE L

EEEEEEEEEEEEEEEEEEE UNIVERSITY

Advanced Object Oriented
Programming

EECS2030
Section M

Organization of a
Java Program

Packages, classes, fields,
and methods

Organization of a Typical Java Program

»one or more files

»7ero or one package
name

»Zero or more import
statements

»one class

»zero or more fields
(class variables)

>Z7ero or more more
constructors

>Zero or more methods

Packages

» Packages are used to organize
Java classes Into namespaces

»Packages are use to organize
related classes and interfaces

»e.g., all of the Java API classes are
In the package named java

package €-> directory (folder)
class <> file

General Overview of Java Packages API
»javax.swing: classes dealing with
the development of GUIs.

»Jjava.lang: essential classes
required by the Java language.

»java . text: facilities for formatting
text output.

»java.util: classes for
storing/accessing collections of objects.

»java.net: for network
communication.

Eclipse — Packages overview

% workspace - Java - EECS2030_W_2017_18/src/eecs2030/lab0/HelloWorld.java - Eclipse

File Edit Source Refactor Navigate Search Project Run Window Help
Hmih g RO TR rFE B IP M Yy vobvryo~

2 Package Explorer % JuJUnit = [HelloWorld java =

% | & ¥ . 1 package eecs203@.labe;
2 EECS2030 F 2016 _17 2
r_l.':_'g EECS2020 W 2016 17 3 pUbliC class HelloWorld {
- T - 4
v = . .
FEC52030 W_2017.18 5¢ public static void main(String[] args) {
v & src E 6 // TODO Auto-generated method stub
project folder t# (default package) 7
3
project sources folder v & eecs2030 9 }
v # lab0 10 1
eecs2030 folder 3 HelloWorld java 11
labO folder & lab1
B test1
i test?
B test3
i testd

To put a class into a package, one uses the "package" statement

https://docs.oracle.com/javase/specs/jls/se10/html/jls-7.html

https://docs.oracle.com/javase/specs/jls/se10/html/jls-7.html

The package statement

Syntax
package <top pkg name>[.<sub pkg name>]*;

Example
package java.lang;
public class String{

.}
» Statement at the beginning of the source file
»Only one package declaration per source file
» T no package name is declared — the class Is

placed into the default package

The import statement

Syntax
import <pkg name>[.<sub pkg name>]*.*;

Example
import java.util.List;
import java.io.¥*;

» Precedes all class declarations
» Tells the compiler where to find
classes

Importing a package

import packageName.*; // all classes
import packageName.className;// one class

Notes on the import statement

» Import ONLY imports public classes from the specified
package
»Classes which are not public cannot be
referenced from outside their package.

» There I1s no way to "import all classes except one"

»import either imports a single class or all
classes within the package

»Note: importing has no runtime or
performance implications. It 1is only
importing a namespace so that the compiler
can resolve class names.

» Import statements must appear at the top of the file
after the package statement and before any class or
Interface definitions.

10

Objects In JAVA

Basics

In Java

»Class: Is a user-defined type

» Describes the data (attributes)

» Also called Variables, instance
variables, attributes, fields.

» Defines the behavior (methods)
» Instances of a class are objects

Declaring Classes

<modifier>* class <class name>{ «—— Syntax
<attribute declaration>*

ﬁcmnﬁtructa:_de&laratimn}*

<method declaration>*
public class Counter/{
private 1int value;
public void inc () {
++value;
Example —— }
public int getValue () {
return value;

}

13

Overview

» An object can contain variables as
well as methods.

> Variables and methods are called
members of class.

Note: Variable in an object is called
a field, data, attributes or instance
variables.

Declaring Attributes/fields

Syntax

<modifier>* <type> <attribute name>[= <initial value>];

Example

public class Foo{
private int x;
private float £ = 0.0;

7

private String name Anonymous”;

15

» Generally, fields are defined as
private so they can’t be seen from
outside the class.

»May add getter methods (functions)
and setter methods (procedures) to
allow access to some or all fields.

»\\We use constructors, to Initialize
fields of a new object during
evaluation of a new-expression.

Non-static classes

Utility class

» A utility class has features (fields
and methods) that are all static.

»therefore, you do not need objects to use
those features

»a well implemented utility class should
have a single, empty private
constructor to prevent the creation of
objects. (more detail later)

Non-static classes

»Most Java classes are not utility
classes

»they are intended to be used to create
to objects

»each object has its own copy of all
non-static fields

> 1t Is also useful to Imagine that
each object has its own copy of all
non-static methods

Why objects?

» Each object has its own copy of all
non-static fields

»this allows objects to have their own state

»1n Java the state of an object is the set of
current values of all of i1ts non-static fields

» ODbject-oriented programming In
Java:
» Use classes to define templates
»Use objects to instantiate classes

» At runtime, create objects and call
methods on objects, to simulate

Interactions between real-life
entities.

Implementing classes

»Many classes represent kinds of values

» examples of values: name, date, colour,
mathematical point or vector

» Java examples: String, Date,
Integer

» When implementing a class you need to
choose appropriate fields to represent
the state of each object

» Consider implementing a class
that represents 2-dimensional
points
»a possible iImplementation would

have:

»a field to represent the x-coordinate
of the point

»a field to represent the y-coordinate
of the point

/**
* A simple class for representing points in 2D Cartesian
* coordinates. Every <code>SimplePoint2D</code> instance has a
* public x and y coordinate that can be directly accessed
* and modified.

*

* i -] -
@author EECS2030 Winter 2016-17 pUb“C class: any client

*

'/ can use this class
public class SimplePoint2 {
public float x; public fields: any client
public float y; can use these fields by
' name

Note: Client is any class with its main method
using this class

24

Using SimplePoint2

»Even In Its current form, we can
use SimplePoint2 to create and
manipulate point objects

public static void main(String[] args) {
// create a point
SimplePoint2 p = new SimplePoint2();

// set its coordinates
p.x = -1.0f;
p.y = 1.5f;

// get its coordinates
System.out.println("p = (" + p.x+ ", " + p.y + ")");
}

» Notice that printing a point Is somewhat

Inconvenient
» we have to manually compute a string
representation of the point

26

Using SimplePoint2

» Initializing the coordinates of the point
IS somewhat inconvenient

»Wwe have to manually set the x and y
coordinates

»\We get unusual results when using
equals

public static void main(String[] args) {
// create a point
SimplePoint2 p = new SimplePoint2();

// set its coordinates
p.x = -1.0f;
p.y = 1.5f;

// get its coordinates
System.out.printin("p = (" + p.x + ",

SimplePoint2 q = new SimplePoint2();
q.X = p.X;
q.y = p.Y;

// equals?
System.out.println("p.equals(q) 1is:

n

+ p.equals(q));

tp.y+7)%);

28

Encapsulation

»\We can add features to SimplePoint2
to make It easier to use

»\We can add constructors that set the
values of the fields of a SimplePoint2
object when It Is created

»\We can add methods that use the fields
of SimplePoint2 to perform some sort
of computation (like compute a string
representation of the point)

» N object oriented programming
the term encapsulation means

bundling data and methods that

use the data into a single unit

» That involves enclosing an object
with a kind of “protective bubble”
so that It cannot be accessed or
modified without proper
permission.

Constructors

» The purpose of a constructor Is to
Initialize the state of an object

> It should set the values of all of the non-
static fields to appropriate values

» A constructor:
» must have the same name as the class

»never returns a value (not even void)
»constructors are not methods

»can have zero or more parameters

Implicit (Generated) Constructor

»Java allows to define a class without any
constructors but i1t does not mean the class will
not have any.

» This class has no constructor but Java compiler
will generate one implicitly and the creation of new
class instances will be possible using new

keyword.

public class NoConstructor {

}

public static void main(String[] args) {
final NoConstructor noConstructorInstance = new NoConstructor();

}

32

Declaring Constructors

Syntax
[<modifier>]<class name>(<argument>%*) {
<statement>*
}
Example

public class Date
{
private int year, month, day;
public Date(int y, int m, int d) {
if(verify(y, m, d)) {

year = y,; month = m; day = d;
}
}
private boolean verify(int y, int m, int d){
//...
})

33

Default constructor

> The default constructor has zero
parameters

» The default constructor
Initializes the state of an object to
some well defined state chosen by
the Implementer

public class SimplePoint2 {
public float x;
public float y;

/**
* The default constructor. Sets both the x and y coordinate
* of the point to 0.of.

*/

public SimplePoint2() {
this.x = 0.0f;
this.y = 0.0f;

} Inside a constructor, the keyword

this is a reference to the object
that is currently being initialized.

35

» The default constructor takes no argument
» The default constructor's body Is empty

public class Date {
private int year, month, day;
public Date() {

}
}

Constructors without Arguments

» The constructor without arguments (or no-
arg constructor) Is the simplest constructors.

» This constructor will be called once new
Instance of the class Is created using the
new keyword.

public class NoArgConstructor ({
public NoArgConstructor () ({
// Constructor body here

}
}

final NoArgConstructor noArgConstructor =
new NoArgConstructor() ;

37

Constructors with Arguments

» The constructors with arguments are the most
Interesting and useful way to parameterize new
class instances creation.

» The following example defines a constructor with two
arguments.

> In this case, when class instance Is being created using
the new keyword, both constructor arguments should

be provided.

public class ConstructorWithArguments ({
public ConstructorWithArguments (final String argl,final
String arg2) {
// Constructor body here
}

final ConstructorWithArguments constructorWithArguments =

new ConstructorWithArguments("argl", "arg2");
38

Custom constructors

» A class can have multiple constructors
but the signatures of the constructors
must be unique

»>1.e., each constructor must have a unigue
list of parameter types

» |t would be convenient for clients if
SimplePoint2 had a constructor that
let the client set the x and y coordinate

of the point

public class SimplePoint2 {
public float x;
public float y;

/**
* Sets the x and y coordinate of the point to the argument

* values.
3

* @param x the x coordinate of the point
* @param y the y coordinate of the point

*/
public SimplePoint2(float x, float y) {
this.x = x;
this.y = y; this.X:the field named x of this point
} this.y :the field named y of this point
X : the parameter named X of the constructor
y : the parameter named y of the constructor

40

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

1.

new allocates memory for a
SimplePoint2 object

the SimplePoint2 constructor is
invoked by passing the memory
address of the object and the
arguments -1.0f and 1.5f to the
constructor

the constructor runs, setting the
values of the fields this.x and
this.y

the value of p is set to the
memory address of the

constructed object parameters

fields {

this

64

600

700

41

this

»In our constructor
public SimplePoint2(float x, float y) {
this.x = Xx;
this.y = y;
}

there are parameters with the same names as fields

when this occurs, the parameter has precedence
over the field.

»Wwe say that the parameter shadows the field, when

shadowing occurs you must use this to refer to the
field

42

References

» https://docs.oracle.com/javase/10/docs/api/overview-summary.htmi
» https://www.eecs.yorku.ca/course_archive/ [look for EECS 2030]

43

https://docs.oracle.com/javase/10/docs/api/overview-summary.html
https://www.eecs.yorku.ca/course_archive/

