
Advanced Object Oriented
Programming

EECS2030

Section M

1

Organization of a
Java Program

Packages, classes, fields,
and methods

2

Organization of a Typical Java Program

one or more files

zero or one package
name

zero or more import
statements

one class

zero or more fields
(class variables)

zero or more more
constructors

zero or more methods
3

Packages

Packages are used to organize
Java classes into namespaces

Packages are use to organize
related classes and interfaces
e.g., all of the Java API classes are
in the package named java

4

package  directory (folder)

class  file

General Overview of Java Packages API

javax.swing: classes dealing with
the development of GUIs.

java.lang: essential classes

required by the Java language.

java.text: facilities for formatting
text output.

java.util: classes for
storing/accessing collections of objects.

java.net: for network
communication. 5

Eclipse – Packages overview

6

project folder

project sources folder

eecs2030 folder

lab0 folder

https://docs.oracle.com/javase/specs/jls/se10/html/jls-7.html

To put a class into a package, one uses the "package" statement

https://docs.oracle.com/javase/specs/jls/se10/html/jls-7.html

The package statement

7

package <top_pkg_name>[.<sub_pkg_name>]*;

Syntax

package java.lang;

public class String{

…}

Example

Statement at the beginning of the source file

Only one package declaration per source file

If no package name is declared → the class is

placed into the default package

The import statement

8

import <pkg_name>[.<sub_pkg_name>]*.*;

Syntax

import java.util.List;

import java.io.*;

Example

Precedes all class declarations

Tells the compiler where to find

classes

Importing a package
import packageName.*; // all classes

import packageName.className;// one class

9

Notes on the import statement
Import ONLY imports public classes from the specified
package
Classes which are not public cannot be

referenced from outside their package.

There is no way to "import all classes except one"
import either imports a single class or all

classes within the package

Note: importing has no runtime or

performance implications. It is only

importing a namespace so that the compiler

can resolve class names.

Import statements must appear at the top of the file
after the package statement and before any class or
interface definitions.

10

Objects in JAVA

Basics

11

In Java

Class: Is a user-defined type
Describes the data (attributes)

Also called Variables, instance
variables, attributes, fields.

Defines the behavior (methods)

Instances of a class are objects

12

Declaring Classes

13

Syntax

Example

Overview

An object can contain variables as
well as methods.

Variables and methods are called
members of class.

Note: Variable in an object is called
a field, data, attributes or instance
variables.

14

Declaring Attributes/fields

15

Syntax
<modifier>* <type> <attribute_name>[= <initial_value>];

Example

Generally, fields are defined as
private so they can’t be seen from
outside the class.

May add getter methods (functions)
and setter methods (procedures) to
allow access to some or all fields.

We use constructors, to initialize
fields of a new object during
evaluation of a new-expression.

16

Non-static classes

17

Utility class

A utility class has features (fields
and methods) that are all static.
therefore, you do not need objects to use
those features

a well implemented utility class should
have a single, empty private
constructor to prevent the creation of
objects. (more detail later)

18

Non-static classes

Most Java classes are not utility
classes
they are intended to be used to create
to objects

each object has its own copy of all
non-static fields

it is also useful to imagine that
each object has its own copy of all
non-static methods

19

Why objects?

Each object has its own copy of all
non-static fields
this allows objects to have their own state
in Java the state of an object is the set of
current values of all of its non-static fields

20

Object-oriented programming in
Java:
Use classes to define templates

Use objects to instantiate classes

At runtime, create objects and call
methods on objects, to simulate

interactions between real-life
entities.

21

Implementing classes

22

Many classes represent kinds of values
 examples of values: name, date, colour,

mathematical point or vector

 Java examples: String, Date,
Integer

When implementing a class you need to
choose appropriate fields to represent
the state of each object

23

Consider implementing a class
that represents 2-dimensional
points
a possible implementation would

have:
a field to represent the x-coordinate

of the point

a field to represent the y-coordinate
of the point

24

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>SimplePoint2D</code> instance has a

* public x and y coordinate that can be directly accessed

* and modified.

*

* @author EECS2030 Winter 2016-17

*

*/

public class SimplePoint2 {

public float x;

public float y;

}

public class: any client

can use this class

public fields: any client

can use these fields by

name

Note: Client is any class with its main method

using this class

Using SimplePoint2

Even in its current form, we can
use SimplePoint2 to create and
manipulate point objects

25

26

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2();

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

}

 Notice that printing a point is somewhat

inconvenient
 we have to manually compute a string

representation of the point

Using SimplePoint2

Initializing the coordinates of the point
is somewhat inconvenient
we have to manually set the x and y
coordinates

We get unusual results when using
equals

27

28

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2();

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2();

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

Encapsulation

We can add features to SimplePoint2
to make it easier to use

We can add constructors that set the
values of the fields of a SimplePoint2
object when it is created

We can add methods that use the fields
of SimplePoint2 to perform some sort
of computation (like compute a string
representation of the point)

29

In object oriented programming
the term encapsulation means
bundling data and methods that
use the data into a single unit
That involves enclosing an object
with a kind of “protective bubble”
so that it cannot be accessed or
modified without proper
permission.

30

Constructors

The purpose of a constructor is to
initialize the state of an object
it should set the values of all of the non-
static fields to appropriate values

A constructor:
must have the same name as the class

never returns a value (not even void)
constructors are not methods

can have zero or more parameters

31

Implicit (Generated) Constructor
Java allows to define a class without any
constructors but it does not mean the class will
not have any.

This class has no constructor but Java compiler
will generate one implicitly and the creation of new
class instances will be possible using new
keyword.

32

public class NoConstructor {

}

public static void main(String[] args) {
final NoConstructor noConstructorInstance = new NoConstructor();

}

Declaring Constructors

33

[<modifier>]<class_name>(<argument>*){

<statement>*

}

Syntax

public class Date

{

private int year, month, day;

public Date(int y, int m, int d) {

if(verify(y, m, d)){

year = y; month = m; day = d;

}

}

private boolean verify(int y, int m, int d){

//...

}}

Example

Default constructor

The default constructor has zero
parameters

The default constructor
initializes the state of an object to
some well defined state chosen by
the implementer

34

35

public class SimplePoint2 {

public float x;

public float y;

/**

* The default constructor. Sets both the x and y coordinate

* of the point to 0.0f.

*/

public SimplePoint2() {

this.x = 0.0f;

this.y = 0.0f;

}
Inside a constructor, the keyword

this is a reference to the object

that is currently being initialized.

The default constructor takes no argument

The default constructor's body is empty

36

public class Date {

private int year, month, day;

public Date(){

}

}

Constructors without Arguments
The constructor without arguments (or no-
arg constructor) is the simplest constructors.

This constructor will be called once new
instance of the class is created using the
new keyword.

37

public class NoArgConstructor {

public NoArgConstructor() {

// Constructor body here

}

}

final NoArgConstructor noArgConstructor =

new NoArgConstructor();

Constructors with Arguments
The constructors with arguments are the most
interesting and useful way to parameterize new
class instances creation.
The following example defines a constructor with two
arguments.

In this case, when class instance is being created using
the new keyword, both constructor arguments should
be provided.

38

public class ConstructorWithArguments {

public ConstructorWithArguments(final String arg1,final

String arg2) {

// Constructor body here

}

final ConstructorWithArguments constructorWithArguments =

new ConstructorWithArguments("arg1", "arg2");

Custom constructors

A class can have multiple constructors
but the signatures of the constructors
must be unique
i.e., each constructor must have a unique
list of parameter types

It would be convenient for clients if
SimplePoint2 had a constructor that
let the client set the x and y coordinate
of the point

39

40

public class SimplePoint2 {

public float x;

public float y;

/**

* Sets the x and y coordinate of the point to the argument

* values.

*

* @param x the x coordinate of the point

* @param y the y coordinate of the point

*/

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

this.x : the field named x of this point
this.y : the field named y of this point
x : the parameter named x of the constructor
y : the parameter named y of the constructor

41

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

64 client

p

600 SimplePoint2 object

x

y

700 SimplePoint2
constructor

this 600a

x -1.0f

y 1.5f

1. new allocates memory for a

SimplePoint2 object

2. the SimplePoint2 constructor is

invoked by passing the memory

address of the object and the

arguments -1.0f and 1.5f to the

constructor

3. the constructor runs, setting the

values of the fields this.x and

this.y

4. the value of p is set to the

memory address of the

constructed object

-1.0f

1.5f

600a

fields

parameters

this

In our constructor

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

there are parameters with the same names as fields
when this occurs, the parameter has precedence
over the field.

we say that the parameter shadows the field, when
shadowing occurs you must use this to refer to the
field

42

References
https://docs.oracle.com/javase/10/docs/api/overview-summary.html

https://www.eecs.yorku.ca/course_archive/ [look for EECS 2030]

43

https://docs.oracle.com/javase/10/docs/api/overview-summary.html
https://www.eecs.yorku.ca/course_archive/

