
Advanced Object Oriented 
Programming

EECS2030

Section M

1



Who Am I?

2

Dr. Mufleh Al-Shatnawi 

office
 Location: TBA

 hours :   4:00PM -- 5:00PM on Tuesdays and 
Thursdays; or by appointments

email
 mufleh@eecs.yorku.ca



Course Format

3

Everything you need to know will 
eventually be on the York University 
Moodle site.

York course Moodle [ 
http://moodle.info.yorku.ca/ ]

Check this site regularly for 
announcements and learning resources

http://moodle.info.yorku.ca/


Course Description

While LE/EECS1020 and
LE/EECS1021 focuses on the 
client concern, this course focuses 
on the concern of the 
implementer. 

Hence, the student will be 
asked to implement a given 
API. 

4



Prerequisites

You must at least have the below prerequisites:

LE/EECS1021 3.00 or 

LE/EECS 1020 (prior to Fall 2015) 
3.00 or 

LE/EECS1022 3.00 or 

LE/EECS 1720 3.00. 
The General Prerequisite is a cumulative GPA of 
4.50 or better over all major EECS courses.

5



Course Topic Map

OO: 
classes, 
objects, 
methods 

Javadoc, 
Exceptions

DbC
(precond., 
postcond., 
invariant) 

OO: JUnit 
Testing 

Strategies 

6

Week1 Week2

Monday, Jan., 14 - Lab Test 0: 
Previous Course skills



7

OO: 
equals, 

comparabl
e, hash 
code

Utility 
Classes ( 
Static vs 

non-Static)

Use of 
Generics 

and 
Interface -

Basic

Use of 
Collection 
(List, Set 
and Map)

Week3 Week4



Big-O: 
Introductio

n

Big-O: 
searching 

and sorting
Aggregation Composition

8

Week5 Week6

Monday, Feb., 4 - Lab Test 1: 
Objects, Classes, Methods

Winter Reading Week (no classes, 
University open): February 16 - 22



Inheritance: 
Code Reuse

Inheritance: 
polymorphism
and dynamic 

Binding.

9

Week8

Monday, Mar., 4 - Lab Test 2: 
Aggregation  Composition



Inheritance
: Abstract 
Classes & 
Methods 

Design by 
Contract 

and 
Inheritance

Inheritance 
Vs JAVA 

Interfaces 

Introduction 
to Recursion 

Programming

10

Week9 Week10



Recursive 
Data 

Structures

More 
about 

Recursion 
Programm

ing.

11

Week11

Monday, Mar., 25 - Lab Test 3: 
Inheritance and basic Recursion 

Programming 



Recursion: 
Runtime 

and 
Correctness 

More 
Advanced 
Topics on 
Generics: 
Generic & 
Inheritance

Review for 
Final Exam

12

Week12 Week13



Lectures

One person talks at a time in class, 
please!

 Do not use Cell phones during 
lectures.

Attendance to all lectures and labs are 
necessary.
Don’t consider coming to classes as 
pressure.

13



Labs
In Prism computing labs (LAS1006)

Lab Zero: due date on Jan. 10 2019
 self-guided, can be done anytime before the start of 

Week 2
 using the Prism lab environment
 using eclipse
 review previous Java programming skills

Labs (<=7) consist of a different set of 
programming problems for each lab
 It is expected that you know how to use the lab 

computing environment.

Fun, hard work, a great learning experience

14



Labs
Lab Times
LAB (Section-01): Mondays: 10:00-11:30 (LAS 1006)

LAB (Section-02): Mondays: 13:30-15:00 (LAS 1006)

group lab work is allowed and strongly encouraged for 
Labs (not Lab Zero)
groups of up to size 3

see Academic Honesty section of syllabus

Do not submit work that is not wholly your own

It is absolutely not acceptable that you:
share your (programming or written) solutions with others;

copy and paste solutions from elsewhere and claim that 
they are yours.

15



Labs

16

Tips for effective group work
alternate who is doing the typing (the driver) every few 
minutes

don’t allow the stronger programmer to do 
everything !!

if you are the stronger programmer then try 
explaining your thought processes to your group 
partners

if you aren’t typing then you are a navigator you 
should be:
watching what the driver is doing to catch mistakes

planning what the group should do next

developing test cases to test the code that is being 
written



EECS Account needed for 
EECS2030

You must at least have a Prism Lab 
account before starting the course. 
If you don't have a Prism Lab account for EECS 
courses, please consult lab monitors at LAS 
1006. 

You must have a YoRkU ID card with you at all 
times.

If you don’t have the account ready, 
you cannot do the labs and tests. 

17



Lab Tests 

Computer test, based on lab 
exercises and lecture materials

 Each lab section has its own lab 
tests 

18



Tests 

All testing occurs during your regularly scheduled 
lab using the EECS labtest environment

miss a test for an acceptable reason?
see Evaluation: Missed tests section of syllabus

19

Test Weight

Lab Test 0 5%

Lab Test 1 15%

Lab Test 2 15%

Lab Test 3 15%

Exam 40%



Textbook

A set of freely available electronic notes is 
available from the Moodle site

Recommended textbooks
Building Java Programs, 4th Edition, S Roges and M 
Stepp

Introduction to Programming in Java, 2nd Edition, R 
Sedgewick and K Wayne
does not cover inheritance

Absolute Java, 6th Edition, W Savitch

Recommended references
Java 8 Pocket Guide, Liguori and Liguori

Effective Java, 3rd Edition, J Bloch
20



Need Accommodation for Tests/Exams?

Please approach me (email, in 
person) as soon as possible, so we 
can make proper arrangements for 
you.

21



Prepare your own machine

Install Java, and Eclipse
http://www.oracle.com/technetwork/java/javase
/overview/index.html

https://www.eclipse.org/downloads/ [Eclipse 
IDE for Java Developers]

22

http://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.eclipse.org/downloads/


Recommended Online Jackie’s tutorials

Eclipse
https://www.eecs.yorku.ca/~jackie/teach
ing/tutorials/index.html#eclipse

Importing a Project from an Archive 
File

Objected Oriented Programming in 
Java
https://www.eecs.yorku.ca/~jackie/teaching/t
utorials/index.html#oop_java

23

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#eclipse
https://youtu.be/h-rgdQZg2qY
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#oop_java


Organization of a 
Java Program

Packages, classes, fields, 
and methods

24



Hello World Application

Write the source code: HelloWorld.java

25

public class HelloWorld{

public static void main( String args[] ){

System.out.println(“Hello world”);

}

}



26

bytecode



Organization of a Typical Java Program

one or more files

27



Organization of a Typical Java Program

one or more files

zero or one package name

28



Organization of a Typical Java Program

one or more files

zero or one package name

zero or more import 
statements

29



Organization of a Typical Java Program

one or more files

zero or one package name

zero or more import 
statements

one class

30



Organization of a Typical Java Program

one or more files

zero or one package name

zero or more import 
statements

one class

one or more fields (class 
variables)

31



Organization of a Typical Java Program

one or more files

zero or one package name

zero or more import 
statements

one class

zero or more fields (class 
variables)

zero or more more 
constructors

32



Organization of a Typical Java Program

one or more files

zero or one package name

zero or more import 
statements

one class

zero or more fields (class 
variables)

zero or more more
constructors

zero or more methods

33



Organization of a Typical Java Program

it's actually more complicated than this
static initialization blocks

non-static initialization blocks

classes inside of classes (inside of classes ...), 
classes inside of methods, anonymous classes

lambda expressions (in Java 8)

For More details see 
http://docs.oracle.com/javase/tutorial/java/javaOO/
index.html

34

http://docs.oracle.com/javase/tutorial/java/javaOO/index.html


Packages

Packages are used to organize Java classes into 
namespaces
We organize files into different directories according to 
their functionality, usability as well as category they 
should belong to.

A namespace is a container for names
the namespace also has a name

Hint: 

Java packages can be stored in compressed files 
called JAR files. 

35



Packages are use to organize 
related classes and interfaces
e.g., all of the Java API classes 
are in the package named java

36

package  directory (folder)

class  file



Packages can contain subpackages
e.g., the package java contains 
packages named lang, util, io, etc. 

The fully qualified name of the 
subpackage is the fully qualified 
name of the parent package 
followed by a period followed by the 
subpackage name
e.g., java.lang, java.util, 
java.io

37



General Overview of Java Packages API 

javax.swing: classes dealing with 
the development of GUIs. 

java.lang: essential classes 

required by the Java language. 

java.text: facilities for formatting 
text output. 

java.util: classes for 
storing/accessing collections of objects. 

java.net: for network 
communication. 38



Packages can contain classes and 
interfaces
e.g., the package java.lang contains 
the classes Object, String, Math, 
etc. 

The fully qualified name of the class is 
the fully qualified name of the 
containing package followed by a period 
followed by the class name
e.g., java.lang.Object, 
java.lang.String, 

java.lang.Math 39



Packages are supposed to ensure that fully 
qualified names are unique

For example, if we have a class name 
called "Vector", its name would crash with 
the Vector class from JDK. However, this 
never happens because JDK uses 
java.util as a package name for the 
Vector class (java.util.Vector ).

This allows the compiler to disambiguate classes 
with the same unqualified name, e.g.,

your.String s = new your.String("hello");

String t = "hello";

40



How do we ensure that fully qualified 
names are unique?

By using package naming convention
packages should be organized using your 
domain name in reverse, e.g.,
EECS domain name eecs.yorku.ca
package name ca.yorku.eecs

We might consider putting everything for 
this course under the following package
eecs2030

41



We might consider putting everything for 
this course under the following package
eecs2030

Labs might be organized into subpackages:
eecs2030.lab0

eecs2030.lab1 and so on

Tests might be organized into subpackages:
eecs2030.test1

eecs2030.test2 and so on

42



Most Java implementations 
assume that your directory 
structure matches the package 
structure, e.g., package
eecs2030.lab0

there is a folder eecs2030 inside 
the project src folder
there is a folder lab0 inside the 
eecs2030 folder

43



Eclipse – Packages overview 

44

project folder

project sources folder

eecs2030 folder

lab0 folder

https://docs.oracle.com/javase/specs/jls/se10/html/jls-7.html

To put a class into a package, one uses the "package" statement

https://docs.oracle.com/javase/specs/jls/se10/html/jls-7.html


Importing a package
import packageName.*; // all classes

import packageName.className;// one class

45



Importing a package - Static 
import
import static packageName.className.*;

Example:
import static java.lang.Math.*;

...

double angle = sin(PI / 2) + ln(E * E);

Static import allows you to refer to the members 
of another class without writing that class's 
name.

Should be used rarely and only with classes 
whose contents are entirely static "utility" code.

46



Package access
Java provides the following access 
modifiers:
public : Visible to all other classes.

private : Visible only to the current 
class (and any nested types).

protected : Visible to the current class, 
any of its subclasses, and any other types 
within the same package.

default (package): Visible to the current 
class and any other types within the 
same package.

47



Notes on the import statement
Import ONLY imports public classes from the specified 
package
Classes which are not public cannot be 

referenced from outside their package.

There is no way to "import all classes except one"
import either imports a single class or all 

classes within the package

Note: importing has no runtime or 

performance implications.  It is only 

importing a namespace so that the compiler 

can resolve class names.

Import statements must appear at the top of the file 
after the package statement and before any class or 
interface definitions.

48



Objects in JAVA 

Basics

49



Define Your Own Objects 

In the previous course, you may have already 
gained experience in defining your own data 
structures (a.k.a. data types, objects) that you 
used within your program in order to group various 
data elements together. 
We create this object by defining a class. 

Each class that we define represents a new type (or 
category) of object. 

50



Objects 

A object represents multiple pieces of 
information that are grouped together. 

A primitive data type (e.g., int, float, 
char) represents a single simple piece of 
information. 

An object, however, is a bundle of 
data, which can be made up of multiple 
primitives or possibly other objects as 
well. 

51



Objects 

Once we define Address class/object, then we 
were allowed to create Address objects and use 
them within our programs. 

52

Address addr;
addr = new Address();
addr.name = "EECS Student One";
addr.streetNumber = 2030;
addr.streetName = "EECS Department ST";
addr.city = "Tornoro";
addr.province = "ON";
addr.postalCode = "M3J 1P3";
System.out.print(addr.name + " lives at ");
System.out.println(addr.streetNumber + " " + addr.streetName);

2030



Overview 

An object can contain variables as 
well as methods. 

Variables and methods are called 
members of class.

Note: Variable in an object is called 
a field, data, attributes or instance
variables.

53



Generally, fields are defined as 
private so they can’t be seen from 
outside the class.

May add getter methods (functions) 
and setter methods (procedures) to 
allow access to some or all fields.

We use constructors, to initialize 
fields of a new object during 
evaluation of a new-expression.

54



Example 

55

public class Circle {

public double x, y;  // centre coordinate

public double r;     //  radius of the circle

}

The fields (data) are also called 
the instance variables.



56

public class Circle {

public double x, y; // centre of the circle

public double r;    // radius of circle

//Methods to return circumference and area

public double circumference() { 

return 2*3.14*r;

}

public double area() { 

return 3.14 * r * r; 

}

}

Method Body



Data Abstraction
Declare the Circle class, have created a new data type –
Data Abstraction

Can define variables (objects) of that type:

Circle  aCircle;

Circle  bCircle;

aCircle, bCircle simply refers to a Circle object, 
not an object itself. 

57

aCircle

null

bCircle

null

Points to nothing 
(Null Reference)



Creating objects of a class

Objects are created dynamically 
using the new keyword.

58

aCircle = new Circle(); bCircle = new Circle();



References 
https://docs.oracle.com/javase/10/docs/api/overview-summary.html

https://www.eecs.yorku.ca/course_archive/ [look for EECS 2030]

59

https://docs.oracle.com/javase/10/docs/api/overview-summary.html
https://www.eecs.yorku.ca/course_archive/

