EECS 1028 M: Discrete Mathematics for Engineers

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle

Why Study Logic?

A formal mathematical "language" for precise reasoning.

- Start with propositions.
- Add other constructs like negation, conjunction, disjunction, implication etc.
- All of these are based on ideas we use daily to reason about things.
- Later: A more expressive language Predicate logic

Propositions

- Declarative sentence.
- Must be either True or False.
- Examples of propositions:
 - York University is in Toronto
 - York University is in downtown Toronto
 - All students at York are Computer Science majors
- Examples of statements that are not propositions:
 - Do you like this class?
 - There are *n* students in this class.

Propositions - 2

- Truth value: True or False
- Variables: *p*, *q*, *r*, *s*, ...
- Negation: $\neg p$ (In English, "not p")
- Truth tables enumerative definition of propositions

р	$\neg p$
Т	F
F	Т

Negating Propositions

- $\neg p$: Literally, "it is not the case that p is true"
 - p: "it rained more than 20 inches in Toronto last month"

• q: "John has many iPads"

• Page 12, Q10 (a) r: "the election is decided"

Practice: Questions 1-7 page 12.

Combining Propositions

Purpose: express more complex statements

- Conjunction, Disjunction
- Exclusive OR (XOR)
- Conditionals, Biconditionals
- Logical Equivalence

Conjunctions and Disjunctions

Purpose: combine statements using OR and AND

- Conjunction (AND): $p \land q$ ["p and q"]
- Disjunction (OR): $p \lor q$ ["p or q"]

Examples

- Q11, page 13 p: It is below freezing q: It is snowing
 - It is below freezing and snowing
 - It is below freezing but not snowing
 - It is either snowing or below freezing (or both)

Exclusive OR

Notation: $p \oplus q$

- TRUE if p and q have different truth values, FALSE otherwise
- Colloquially, we often use OR ambiguously -
 - "an entree comes with soup or salad" implies XOR, but
 - "students can take MATH XXXX if they have taken MATH 2320 or MATH 1019" usually means the normal OR (so a student who has taken both is still eligible for MATH XXXX).

Conditionals

```
Notation: p \rightarrow q ["if p then q"]
p: hypothesis, q: conclusion
Examples:
```

- "If you turn in a homework late, (then) it will not be graded"
- If you get 100% in this course, (then) you will get an A+"

A conditional is a proposition

- Tricky question: Is $p \rightarrow q$ TRUE if p is FALSE?
- Think of "If you get 100% in this course, you will get an A+" as a promise is the promise violated if someone gets 50% and does not receive an A+?
- Q: Similarities with if(...) then ... statement in programming?

Conditionals - Truth Table

 $p \rightarrow q$: When is it False? Q17, pg 14:

- If 1 + 1 = 3 then 2 + 2 = 4
- If 1 + 1 = 3 then 2 + 2 = 5
- If 1 + 1 = 2 then 2 + 2 = 4

• If 1 + 1 = 2 then 2 + 2 = 5

|--|

p	q	p ightarrow q	$\neg p \lor q$
F	F	Т	Т
F	Т	Т	Т
Т	F	F	F
Т	Т	Т	Т

English Statements to Conditionals (pg 6)

- p
 ightarrow q may be expressed as
 - A sufficient condition for q is p
 - q whenever p
 - q unless $\neg p$
 - Difficult: A necessary condition for *p* is *q* if *p* happened, *q* must have happened, i.e., *p* cannot happen if we do not have *q*.
 - p only if q: not the same as p if q! Same as the previous point, if p happened, q must have happened

Logical Equivalence

- $p \rightarrow q$ and $\neg p \lor q$ have the truth table: Does that make them equal? equivalent?
 - $p \rightarrow q$ and $\neg p \lor q$ are **logically** equivalent

• Truth tables are the simplest way to prove such facts.

• We will learn other ways later.

Biconditionals

Notation: $p \leftrightarrow q$ ["if and only if"]

- True if p, q have same truth values, false otherwise.
- Can also be defined as $(p
 ightarrow q) \wedge (q
 ightarrow p)$
- Example: Q16(c) "1+1=3 if and only if monkeys can fly".
- Q: How is this related to XOR?

р	q	$p \leftrightarrow q$	$p\oplus q$
F	F	Т	F
F	Т	F	Т
Т	F	F	Т
Т	Т	Т	F

Contrapositive

Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$

- E.g. The contrapositive of "If you get 100% in this course, you will get an A+" is "If you do not get an A+ in this course, you did not get 100%".
- Any conditional and its contrapositive are logically equivalent (have the same truth table).

p	q	p ightarrow q	$\neg q$	$\neg p$	eg q ightarrow eg p
F	F	Т	Т	Т	Т
F	Т	Т	F	Т	Т
Т	F	F	Т	F	F
Т	Т	Т	F	F	Т

Proof using Contrapositive

Prove: If x^2 is even, then x is even

- Proof 1: Using contradiction, seen before.
- Proof 2:
 x² = 2a for some integer a. Since 2 is prime, 2 must divide x. (Uses knowledge of primes)
- Proof 3:

if x is not even, then x is odd. Therefore x^2 is odd. This is the contrapositive of the original assertion. (Uses only facts about odd and even numbers)

Converse and Inverse

Converse of $p \rightarrow q$ is $q \rightarrow p$ Converse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$

- Converse examples:
 - "If you get 100% in this course, you will get an A+", converse "If you get an A+ in this course, you scored 100%".
 - "If you won the lottery, you are rich", converse "If you are rich, you (must have) won the lottery".
- Neither is logically equivalent to the original conditional

р	q	p ightarrow q	q ightarrow p	eg p ightarrow eg q
F	F	Т	Т	Т
F	Т	Т	F	F
Т	F	F	Т	Т
Т	Т	Т	Т	Т

Tautology and Logical Equivalence

Tautology: A (compound) proposition that is always TRUE, e.g. $q \lor \neg q$

• Logical equivalence redefined: p, q are logical equivalences (Symbolically $p \equiv q$) if $p \leftrightarrow q$ is a tautology.

• Intuition: $p \leftrightarrow q$ is true precisely when p, q have the same truth values.

Compound Propositions: Precedence

Example: $p \land q \lor r$: Could be interpreted as $(p \land q) \lor r$ or $p \land (q \lor r)$

• precedence order: $\neg, \land, \lor, \rightarrow, \leftrightarrow$ (Overruled by brackets)

• We use this order to compute truth values of compound propositions.

Translating English Sentences to Propositional Logic statements

Pages 14-15:

- I will remember to send you the address only if you send me an email message
- The beach erodes whenever there is a storm
- John will go swimming unless the water is too cold
- Getting elected follows from knowing the right people.

Readings and Notes

- Read pages 1-12.
- Think about the notion of truth tables.
- Master the rationale behind the definition of conditionals.
- Practice translating English sentences to propositional logic statements.

Manipulating Propositions (Sec 1.3)

- Compound propositions can be simplified by using simple rules. Read page 25 - 28.
- Some are obvious, e.g. Identity, Domination, Idempotence, Negation, Double negation, Commutativity, Associativity
- Less obvious: Distributive, De Morgan's laws, Absorption

TABLE 6 Logical Equivalences.		
Equivalence	Name	
$p \wedge \mathbf{T} \equiv p$	Identity laws	
$p \vee \mathbf{F} \equiv p$		
$p \lor T \equiv T$	Domination laws	
$p \wedge \mathbf{F} \equiv \mathbf{F}$		
$p \lor p \equiv p$	Idempotent laws	
$p \wedge p \equiv p$		
$\neg(\neg p) \equiv p$	Double negation law	
$p \lor q \equiv q \lor p$	Commutative laws	
$p \wedge q \equiv q \wedge p$		
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws	
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws	
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$		
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws	
$\neg (p \lor q) \equiv \neg p \land \neg q$		
$p \lor (p \land q) \equiv p$	Absorption laws	
$p \wedge (p \vee q) \equiv p$		
$p \lor \neg p \equiv \mathbf{T}$	Negation laws	
$p \land \neg p \equiv \mathbf{F}$		

Distributive Laws

- p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) Intuition (not a proof!) - For the LHS to be true: p must be true and q or r must be true. This is the same as saying p and q must be true or p and r must be true.
- p∨(q∧r) ≡ (p∨q)∧(p∨r) Intuition (less obvious) - For the LHS to be true: p must be true or both q and r must be true. This is the same as saying p or q must be true and p or r must be true.

Proof: use truth tables.

De Morgan's Laws

•
$$\neg (q \land r) \equiv \neg q \lor \neg r$$

Intuition - For the LHS to be true: $q \wedge r$ must be false. This is the same as saying that q or r must be false.

Proof: use truth tables.

Negating Conditionals

The negation of p
ightarrow q is NOT $\neg p
ightarrow \neg q$ or any other conditional

- Easiest to negate the logically equivalent form of p → q, viz., ¬p ∨ q. So ¬(p → q) ≡ ¬(¬p ∨ q) ≡ p ∧ ¬q
- Relate to the truth table of p
 ightarrow q

p	q	p ightarrow q	eg (p ightarrow q)	$p \wedge \neg q$
F	F	Т	F	F
F	Т	Т	F	F
Т	F	F	Т	Т
Т	Т	Т	F	F

Using the laws

Q: Is p
ightarrow (p
ightarrow q) a tautology?

• Can use truth tables

• Can write a compound proposition and simplify:

$$egin{aligned} p o (p o q) &\equiv
eg p ee (
eg p ee q) \ &\equiv
eg p ee (
eg p ee q) \ &\equiv
eg p ee q \lor q \ &\equiv
eg p ee q \end{aligned}$$

This is False when p is True and q is False