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Predicate Logic Definitions

What is Predicate Logic?

Generalizes Propositional Logic to make statements about sets
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Predicate Logic Definitions

What is a Predicate?

A predicate is a proposition that is a function of one or more variables
E.g.:For an integer x , Even(x) : x is an even number. So Even(1) is
false, Even(2) is true, and so on.

Examples of predicates:

Domain ASCII characters - IsAlpha(x) : TRUE iff x is an
alphabetical character.

Domain floating point numbers - IsInt(x): TRUE iff x is an
integer.

Domain integers: Prime(x) - TRUE if x is prime, FALSE
otherwise.

The domain of the variable(s) must ALWAYS be specified
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Predicate Logic Definitions

Predicates

Ways of defining predicates:
Domain R

Explicit: Positive(x) is True iff x is positive

Implicit: x > 0

Recall: Positive(2),Positive(−3) are predicates, but
Positive(2/0),Positive(x) is not.
Q:Is Positive(x2) a predicate?

The purpose of Predicate Logic is to make general statements
like “all birds can fly”. Need some more constructs to make such
statements
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Predicate Logic Definitions

Quantifiers

describes the values of a variable that make the predicate true.

Existential quantifier: ∃xP(x) – “P(x) is true for some x in the
domain” or “there exists x such that P(x) is TRUE”.

Universal quantifier: ∀xP(x) – “P(x) is true for all x in the
domain”

Either is meaningless if the domain is not known/specified.

Examples (domain R, uses implicit predicates):

∀x(x2 ≥ 0)

∃x(x > 1)

Quantifiers with restricted domain (∀x > 1)(x2 > x)
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Predicate Logic Definitions

Using Quantifiers

Domain integers:

The cube of all negative integers is negative.
∀x(x < 0)→ (x3 < 0)

Expressing sums :

∀n

(
n∑

i=1

i =
n(n + 1)

2

)
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Predicate Logic Definitions

Scope of Quantifiers

∃∀ have higher precedence than operators from Propositional
Logic; so ∀xP(x) ∨ Q(x) is not logically equivalent to
∀x(P(x) ∨ Q(x))

∃x(P(x) ∧ Q(x)) ∨ (∀xR(x))
Say P(x) : x is odd, Q(x) : x is divisible by 3,
R(x) : (x = 0) ∨ (2x > x)
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Conditionals

Conditionals

Defined similarly as before. Examples:

Domain: set of all birds. Parrots(x) is a predicate that is true iff
x is a parrot. Fly(x) is a predicate that is true iff x can fly.
All parrots can fly: (∀x)Parrot(x)→ Fly(x)

Definition of injective functions: f : A→ B ,
(∀x1)(∀x2)x1 6= x2 → f (x1) 6= f (x2).

Expressing “There are at exactly 2 real square roots of any
natural number n, namely

√
n, −
√
n.”

Define the predicate Sqrt(a, b) : “b is a square root of a”.
Then the statement is (Domain of n is N, y1, y2, z is R)
∀n∃y1∃y2(Sqrt(n, y1) ∧ Sqrt(n, y2) ∧ (y1 6= y2)
∧(∀z)Sqrt(n, z)→ (z = y1) ∨ (z = y2))
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Conditionals

When to use Conditionals

Suppose the domain is the set of all birds.
“All parrots can fly”: (∀x)Parrot(x)→ Fly(x) is correct;
(∀x)Parrot(x) ∧ Fly(x) is incorrect

More tricky: Domain: all York students. CySec(x) is a predicate
that is true iff x is a Cybersecurity major. Takes1019(x) is a
predicate that is true iff x takes EECS 1019.
“Some Cybersecurity major at York takes EECS 1019”:
∃x(CySec(x)→ Takes1019(x)) ?
∃x(CySec(x) ∧ Takes1019(x)) ?

Related confusing usage:
(∀x ∈ S)P(x) – really means (∀x)(x ∈ S → P(x))
(∃x ∈ S)P(x) – really means (∃x)(x ∈ S ∧ P(x))
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Conditionals

Mathematical Properties Stated using Predicate

Logic

A function is surjective. Consider f : A→ B .
(∀x)x ∈ B → (∃y)(y ∈ A) ∧ (f (y) = x)

A set S has a maximum (largest element). Let the domain be S .
(∃y)(∀x)x ≤ y

A set S ⊆ N is finite. We need to use the following property of
the natural numbers: a subset S is finite iff it has a maximum.
Let the domain be S .
(∃y)(∀x)x ≤ y

A set S ⊆ N is infinite. Negate the above (the domain is S):
(∀y)(∃x)x > y
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Conditionals

Logical Equivalence

Logical Equivalence: P ≡ Q iff they have same truth value no
matter which domain is used and no matter which predicates are
assigned to predicate variables
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Conditionals

Negating Predicate Logic Statements

Examples:

“There is no student who can ...”

“Not all professors are bad”

“There is no Toronto Raptor that can dunk like Vince Carter”

Rules:

¬∀xP(x) ≡ ∃x¬P(x) Why?

¬∃xP(x) ≡ ∀x¬P(x) Why?

Careful: The negation of “Every Canadian loves Hockey” is NOT
“No Canadian loves Hockey”!

Many, many students make this mistake!
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Nested Quantifiers

Nested Quantifiers

Allows simultaneous quantification of many variables
E.g. – domain Z,

∃x∃y∃z(x2 + y 2 = z2) (Pythagorean triples)

∀n∃x∃y∃z(xn + yn = zn) (Fermat’s Last Theorem implies this is
false)

Domain R:

∀x∀y∃z((x < z < y) ∨ (y < z < x)) Is this true?

∀x∀y∃z((x = y) ∨ (x < z < y) ∨ (y < z < x))

∀x∀y∃z((x 6= y)→ ((x < z < y) ∨ (y < z < x)))
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Nested Quantifiers

Nested Quantifiers - Similarities with loops

Analogy: An inner quantified variable (inner loop limit) can depend
on the outer quantified variable (outer loop index)

E.g. in ∀x∃y(x + y = 0) we chose y = −x , so for different x we
need different y to satisfy the statement.

∀p∃jAccept(p, j) (p, j have different domains) does NOT say
that there is a j that will accept all p.

CAUTION: In general, order MATTERS

∀x∃y(x < y): “there is no maximum integer”

∃y∀x(x < y): “there is a maximum integer”
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Nested Quantifiers

Negation of Nested Quantifiers

Use the same rule as before carefully.

¬∃x∀y(x + y = 0):

¬∃x∀y(x + y = 0) ≡ ∀x¬∀y(x + y = 0)

≡ ∀x∃y¬(x + y = 0)

≡ ∀x∃y(x + y 6= 0)

¬∀x∃y(x < y)

¬∀x∃y(x < y) ≡ ∃x¬∃y(x < y)

≡ ∃x∀y¬(x < y)

≡ ∃x∀y(x ≥ y)
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Nested Quantifiers

Exercises

Check that

∀x∃y(x + y = 0) is not true over the positive integers.

∃x∀y(x + y = 0) is not true over the integers.

∀x 6= 0∃y(y = 1/x) is true over the real numbers.

Read 1.4-1.5.
Practice: Q2,8,16,30 (pg 65-67)
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Proofs and Counterexamples

Proofs vs Counterexamples

To prove quantified statements of the form

∀xP(x): an example (or 10) x for which P(x) is true is/are
NOT enough; a proof is needed

∃xP(x): an example x for which P(x) is true is enough.

To DISPROVE quantified statements of the form

∀xP(x): a COUNTERexample x for which P(x) is false is
enough

∃xP(x): an example x for which P(x) is false is NOT enough; a
proof is needed

Intuition:
Disproving (∀x)P(x) means proving ¬(∀x)P(x) ≡ (∃x)¬P(x)
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Inference in Predicate Logic

Inference in Predicate Logic

Most rules are very intuitive

Universal instantiation – If ∀xP(x) is true, we infer that P(a) is
true for any given a

Universal Modus Ponens: ∀xP(x)→ Q(x) and P(a) imply Q(a)
Example: If x is odd then x2 is odd. a is odd. So a2 is odd.

Many other rules, see page 76.

Again, understanding the rules is crucial, memorizing is not.

You should be able to see that the rules make sense and
correspond to our intuition about formal reasoning.

S. Datta (York Univ.) EECS 1028 W 19 18 / 22



Inference in Predicate Logic

Inference Rules
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Inference in Predicate Logic

Commonly used technique: Universal

generalization

Examples

Prove: If x is even, x + 2 is even

Prove: If x2 is even, x is even
[Note that the problem is to prove an implication.]
Proof: if x is not even, x is odd. Therefore x2 is odd. This is
the contrapositive of the original assertion.
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Inference in Predicate Logic

Aside: Inference and Planning

The steps in an inference are useful for planning an action.

Example: your professor has assigned reading from an
out-of-print book. How do you do it?

Example 2: you are participating in the television show
“Amazing race”. How do you play?

The steps in an inference are useful for proving assertions from
axioms and facts.
Q: Why is it important for computers to prove theorems?

Proving program-correctness

Hardware design

Data mining

Many more
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Inference in Predicate Logic

Aside: Inference and Planning - 2

Sometimes the steps of an inference (proof) are useful. E.g. on
Amazon book recommendations are made.

You can ask why they recommended a certain book to you
(reasoning).
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