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What is Predicate Logic?

Generalizes Propositional Logic to make statements about sets
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What is a Predicate?

A predicate is a proposition that is a function of one or more variables
E.g.:For an integer x, Even(x) : x is an even number. So Even(1) is
false, Even(2) is true, and so on.

Examples of predicates:

@ Domain ASCII characters - IsAlpha(x) : TRUE iff x is an
alphabetical character.

@ Domain floating point numbers - IsInt(x): TRUE iff x is an
integer.

e Domain integers: Prime(x) - TRUE if x is prime, FALSE
otherwise.

The domain of the variable(s) must ALWAYS be specified
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Predicates

@ Ways of defining predicates:
Domain R

o Explicit: Positive(x) is True iff x is positive

o Implicit: x >0
@ Recall: Positive(2), Positive(—3) are predicates, but
Positive(2/0), Positive(x) is not.
Q:ls Positive(x?) a predicate?
@ The purpose of Predicate Logic is to make general statements
like “all birds can fly". Need some more constructs to make such
statements
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Quantifiers

describes the values of a variable that make the predicate true.

e Existential quantifier: 3xP(x) — “P(x) is true for some x in the
domain” or “there exists x such that P(x) is TRUE".

@ Universal quantifier: VxP(x) — “P(x) is true for all x in the
domain”

o Either is meaningless if the domain is not known /specified.

@ Examples (domain R, uses implicit predicates):
o Vx(x% >0)

o dx(x>1)

o Quantifiers with restricted domain (Vx > 1)(x? > x)
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Using Quantifiers

Domain integers:

@ The cube of all negative integers is negative.

Vx(x < 0) — (x* < 0)

@ Expressing sums :
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Scope of Quantifiers

@ 1V have higher precedence than operators from Propositional
Logic; so VxP(x) V Q(x) is not logically equivalent to
Vx(P(x) v Q(x))

o Ix(P(x) A Q(x)) V (VxR(x))
Say P(x) : x is odd, Q(x) : x is divisible by 3,

R(x): (x=0)V (2x > x)
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Conditionals

Defined similarly as before. Examples:

@ Domain: set of all birds. Parrots(x) is a predicate that is true iff
x is a parrot. Fly(x) is a predicate that is true iff x can fly.
All parrots can fly: (Vx)Parrot(x) — Fly(x)

@ Definition of injective functions: f : A — B,
(VX]_)(VXQ)X]_ 7£ Xo — f(X]_) 7£ f(XQ).

@ Expressing “There are at exactly 2 real square roots of any
natural number n, namely \/n, —/n."
Define the predicate Sqrt(a, b) : "b is a square root of a".
Then the statement is (Domain of nis N, y1, y», z is R)
Vn3y13y2(Sqrt(n, y1) A Sqrt(n, y2) A (y1 # y2)
N(Vz)Sqrt(n, z) = (z = y1) V (z = y2))
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When to use Conditionals

@ Suppose the domain is the set of all birds.
“All parrots can fly": (Vx)Parrot(x) — Fly(x) is correct;
(Vx)Parrot(x) A Fly(x) is incorrect

@ More tricky: Domain: all York students. CySec(x) is a predicate
that is true iff x is a Cybersecurity major. Takes1019(x) is a
predicate that is true iff x takes EECS 1019.

“Some Cybersecurity major at York takes EECS 1019":
Ix(CySec(x) — Takes1019(x)) ?
Ix(CySec(x) A Takes1019(x)) ?

@ Related confusing usage:
(Vx € S)P(x) — really means (Vx)(x € S — P(x))
(Ix € S)P(x) — really means (3x)(x € S A P(x))
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Conditionals

Mathematical Properties Stated using Predicate
Logic

@ A function is surjective. Consider f : A — B.
(Vx)x € B — (Fy)(y € A) A (f(y) = x)

@ A set S has a maximum (largest element). Let the domain be S.
@) (Px)x <y

o Aset S C Nis finite. We need to use the following property of
the natural numbers: a subset S is finite iff it has a maximum.
Let the domain be S.

Ey)(vx)x <y
@ A set S C Nis infinite. Negate the above (the domain is S):
(Vy)(3x)x >y
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Logical Equivalence

@ Logical Equivalence: P = Q iff they have same truth value no
matter which domain is used and no matter which predicates are
assigned to predicate variables
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Negating Predicate Logic Statements

Examples:

@ “There is no student who can ...

@ “Not all professors are bad”

@ “There is no Toronto Raptor that can dunk like Vince Carter”

Rules:

e VxP(x) = Ix—=P(x)
e —IxP(x) = Vx—P(x)

Careful: The negation of “Every Canadian loves Hockey” is NOT
“No Canadian loves Hockey" !

Many, many students make this mistake!‘
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Nested Quantifiers

Nested Quantifiers

Allows simultaneous quantification of many variables
E.g. — domain Z,

e IxJyIz(x? + y? = z2) (Pythagorean triples)
e Vnixdy3dz(x" + y" = z") (Fermat's Last Theorem implies this is
false)
Domain R:

o VxVydz((x <z<y)V(y <z<x))Is this true?
o WVydz((x=y)V(x<z<y)V(y<z<x))

o VxWydz((x #y) = (x <z <y)V(y <z <x)))
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Nested Quantifiers

Nested Quantifiers - Similarities with loops

Analogy: An inner quantified variable (inner loop limit) can depend
on the outer quantified variable (outer loop index)

e E.g. in Vx3Jy(x + y = 0) we chose y = —x, so for different x we
need different y to satisfy the statement.

e Vp3jAccept(p,j) (p,j have different domains) does NOT say
that there is a j that will accept all p.

CAUTION: In general, order MATTERS

e Vx3Jy(x < y): “there is no maximum integer”

e JyVx(x < y): “there is a maximum integer”
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Negation of Nested Quantifiers

Use the same rule as before carefully.
e —-IxVy(x+y =0):

-IxVy(x +y =0) = Vx=Vy(x+y =0)
Vx3dy—(x +y =0)
= Vx3dy(x+y #0)

e —VxJy(x < y)

—VxJy(x < y) Ix—TJy(x < y)
IxVy—(x < y)

= WVy(x>y)
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Nested Quantifiers

Exercises

Check that
e Vx3Jy(x + y = 0) is not true over the positive integers.

e IxVy(x +y = 0) is not true over the integers.

@ Vx # 0dy(y = 1/x) is true over the real numbers.

Read 1.4-1.5.
Practice: Q2,8,16,30 (pg 65-67)
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Proofs and Counterexamples

Proofs vs Counterexamples

To prove quantified statements of the form
@ VxP(x): an example (or 10) x for which P(x) is true is/are
NOT enough; a proof is needed

@ JxP(x): an example x for which P(x) is true is enough.

To DISPROVE quantified statements of the form
@ VxP(x): a COUNTERexample x for which P(x) is false is
enough
@ IxP(x): an example x for which P(x) is false is NOT enough; a
proof is needed
Intuition:
Disproving (Vx)P(x) means proving =(¥x)P(x) = (3Ix)—-P(x)
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Inference in Predicate Logic

Inference in Predicate Logic

Most rules are very intuitive

@ Universal instantiation — If YxP(x) is true, we infer that P(a) is
true for any given a

@ Universal Modus Ponens: VxP(x) — Q(x) and P(a) imply Q(a)
Example: If x is odd then x? is odd. ais odd. So a? is odd.

@ Many other rules, see page 76.

e Again, understanding the rules is crucial, memorizing is not.

e You should be able to see that the rules make sense and
correspond to our intuition about formal reasoning.
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Inference in Predicate Logic

Inference Rules

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference

Name

VxP(x)
. P(c)

Universal instantiation

P(C) for an arbitrary c
L VxP(x)

Universal generalization

Jx P(x)
. P(c) for some element ¢

Existential instantiation

P (c) for some element ¢
. AxP(x)

Existential generalization
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Inference in Predicate Logic

Commonly used technique: Universal
generalization

Examples

@ Prove: If x is even, x + 2 is even

@ Prove: If x2 is even, x is even
[Note that the problem is to prove an implication.]
Proof: if x is not even, x is odd. Therefore x? is odd. This is
the contrapositive of the original assertion.
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Aside: Inference and Planning

@ The steps in an inference are useful for planning an action.
e Example: your professor has assigned reading from an
out-of-print book. How do you do it?
e Example 2: you are participating in the television show
“Amazing race”. How do you play?

@ The steps in an inference are useful for proving assertions from
axioms and facts.
Q: Why is it important for computers to prove theorems?

e Proving program-correctness
e Hardware design
e Data mining

e Many more
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Aside: Inference and Planning - 2

@ Sometimes the steps of an inference (proof) are useful. E.g. on
Amazon book recommendations are made.

@ You can ask why they recommended a certain book to you
(reasoning).
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