
Collec&ons	

EECS1022/Lespérance	 1	

EECS1012	
MOBILE	COMPUTING	

PROF.	Y.	LESPÉRANCE	
Dept.	of	Electrical	Engineering	&	Computer	Science	

1	

§  Problem:	naming	a	bunch	of	things	
Cannot	use	variables	…	will	run	out	of	names!	

§  Solu&ons	
Tradi6onal	approach:	name	+	index	=	array	
Modern	approach:	object	with	API	=	list,	set,	map	

§  Comparison	
Arrays	have	no	API	and	suffer	from	fixed	alloca6on	
The	modern	collec6on	framework	has	a	rich	API		

§  But	we	occasionally	use	arrays	
For	compa6bility	with	low-level	API	(e.g.	split	and	args)	

2	

§  Represent	a	collec&on	of	en&&es	of	the	same	
type	

§  Declara&on:	type[]	name;	e.g.	int[]	bag;	

§  Instan&a&on:	new	type[size],	e.g.		
bag	=	new	int[100];	

§  Refer	to	elements	by	name[index]	,	e.g.	
bag[0]	=	123;		bag[1]	=	bag[0]	+	5;	

3	

§  name.length	represents	the	array’s	length	
§  Indices	go	from	0	to	length	–	1	
§ Mul&dimensional	arrays	can	also	be	used	

	

4	

Collec&ons	

EECS1022/Lespérance	 2	

If	we	pick	an	integer	in	[1,1M]	randomly,	how	likely	is	
it	to	get	one	whose	digit	sum	is	divisible	by	7?	

5	

Compute	the	probability	by	sampling	10%	of	those	integers	
and	store	the	sample	in	a	collec6on.	

1.  Use	Arrays	
See	SumDiv7_array.java	

2.  Use	Collec&ons	
See	SumDiv7_coll.java	

§  List	vs	Set	vs	Map	
List:	may	contain	duplicates	and	elements	are	ordered.	Set:	no	
duplicates	and	no	order.	Map:	key-value	pairs,	key	unique.	

§  The	Interfaces	(aka	Abstract	Data	Types)	
List<E>,	Set<E>,	and	Map<K,V>	(use	generics)	

§  The	Classes	(aka	Implementa&ons)	
List:	ArrayList	and	LinkedyList;	Set:	HashSet	and	TreeSet	
Map:	HashMap	and	TreeMap	

§  Common	APIs	
size(),	clear(),	iterator(),	toString()	
Methods	to	insert,	delete,	and	search	à	CRUD	

6	

7	

Basic	

size()	

clear()	

iterator()	

Map	

put(K,V),	get(K),	keySet()	

containsKey(K)	

containsValue(V)	

List/Set	

add(E)	

remove(E)	

contains(E)	

List	Only	

add(int,	E)	

remove(int)	

get(int)	

Other	API	

The	enhanced	for	loop	

Collec&ons.sort(List)	

Arrays…	see	API	

§  add(E	e)	on	a	set	returns	false	if	e	is	already	
in	it	(for	a	list	always	returns	true)	

§  remove(E	e)	returns	true	iff	e	is	found	in	the	
set	or	list;	for	a	list	removes	only	first	
occurrence	

§  Collec&ons.sort(List	<E>	l)	rearranges	l	to	
make	it	sorted	(according	to	natural	order)	

§  Arrays.asList(E[]	a)	returns	a	List	
representa&on	of	array	a		

8	

Collec&ons	

EECS1022/Lespérance	 3	

§  Traversing	a	List<E>	bag	i.e.	going	through	all	of	its	elements	
one	by	one,	is	a	common	opera&on:	

for	(E	e:	bag)	{	

	System.out.println(e);	

}	

§  Similarly	for	sets	

§  For	lists,	can	also	do	an	indexed	traversal:	
for	(int	i	=	0;	i	<	bag.size();	i++)	{	

	E	e	=	bag.get(i);	System.out.println(e);	

}	

	 9	

Given	a	list,	determine	whether	it	contains	duplicate	
elements.	

Can	be	done	in	3	ways:	

	

10	

1.  Sort	the	list	and	then	traverse	it	to	check	for	adjacent	
duplicates	

2.  Create	a	set	and	then	try	to	add	each	list	element	to	it	
checking	if	add	succeeds	

3.  Traverse	the	list,	and	for	each	element	traverse	the	list	
again	to	see	if	it	occurs	elsewhere	

Collec&ons.sort(bag);	

boolean	dis&nct	=	true;	

for	(int	i	=	0;	i	<	bag.size()	-	1;	i++)	{	

	dis&nct	=	dis&nct	&&	!bag.get(i).equals(bag.get(i+1));	

}	

§  Can	also	exit		as	soon	as	a	duplicate	is	found:		
for	(int	i	=	0;	i	<	bag.size()	–	1	&&	dis&nct;	i++)	{	

	dis&nct	=	!bag.get(i).equals(bag.get(i+1));	

}	

	
11	

Set<Integer>	tmp	=	new	HashSet<Integer>();	

boolean	dis&nct	=	true;	

for	(int	i	=	0;	i	<	bag.size()	;	i++)	{	

	dis&nct	=	dis&nct	&&	tmp.add(bag.get(i));	

}	

§  Can	also	exit		as	soon	as	a	duplicate	is	found:		
for	(int	i	=	0;	i	<	bag.size()	&&	dis&nct;	i++)	{	

	dis&nct	=	tmp.add(bag.get(i))	;	

}	

	
12	

Collec&ons	

EECS1022/Lespérance	 4	

boolean	dis&nct	=	true;	

for	(int	i	=	0;	i	<	bag.size();	i++)	{	

	int	x	=	bag.get(i);	

	 	for	(int	j	=	0;	j	<	bag.size();	j++)	{	

	 	int	y	=	bag..get(j);	

	 	dis&nct	=	dis&nct	&&	(i	=	j	||	x	!=	y);	

	}	

}	
Can	also	exit		as	soon	as	a	duplicate	is	found	by	adding	&&	
dis&nct	to	both	loop	condi&ons		

13	

Iterator<Integer>	outer	=	bag.iterator();	

boolean	dis&nct	=	true;	

while	(outer.hasNext()	&&	dis&nct)	{	

	Integer	x	=	outer.next();	

	Iterator<Integer>	inner=	bag.iterator();	

	while	(inner.hasNext()	&&	dis&nct)	{	

	 	Integer	y	=	inner.next();	

	 	dis&nct	=	!x.equals(y)	||	x	=	y;	

	}	

}	
	

14	

Given	a	long	sentence,	find	all	its	words;	the	dis6nct	
ones	(regardless	of	case);	display	them;	sort	them;	
and	then	locate	the	longest	and	most	frequent	ones.	

15	

A	"word"	is	defined	as	a	sequence	of	characters	terminated	by	
space,	punctua6on,	or	end-of-string.		

1.  Use	split	with	a	regex	
2.  Turn	array	to	a	collec&on	
3.  Use	collec&on	API	

See	WordSmith.java	

§  An	iterator	is	an	object	that	allows	you	to	traverse	a	
collec&on	

§  Given	a	reference		bag		of	type	List<E>	or	Set<E>	one	can	
get	an	iterator	for	it		as	follows:	

Iterator<E>	itr	=	bag.iterator();	

§  To	check	if	there	is	a	next	element	one	calls	the	boolean	
method	itr.hasNext()	

§  To	obtain	the	next	element	(provided	there	is	one)	we	write	

					E	e	=	itr.next();	

16	

Collec&ons	

EECS1022/Lespérance	 5	

The	extended	for	loop	for	a	reference		bag		of	type	List<E>	or	
Set<E>:	

						for	(E	e:	bag)	{	

	…	

}	

just	abbreviates/stands	for	

for	(Iterator<E>	itr	=	bag.iterator();	itr.hasNext();)	{	

	E	e	=	itr.next();		

							…	

}	

	 17	

public	sta&c	Set<E>	intersect(Set<E>	set1,	Set<E>	set2){	

	Set<E>	result	=	new	HashSet<E>();	

	for(E	e	:	set1)	{	

	 	if	(set2.contains(e){	

	 	 	result.add(e);	

	 	}	

	}	

	return	result;	

}	
	 18	

public	sta&c	Set<E>	union(Set<E>	set1,	Set<E>	set2){	

	Set<E>	result	=	new	HashSet<E>();	

	for(E	e	:		set1)	{	

	 	result.add(e);	

	}	

	for	(E	e	:	set2){	

	 	result.add(e);	

	}	

	return	result;	

}	
	

19	 20	

Basic	

size()	

clear()	

iterator()	

Map	

put(K,V),	get(K),	keySet()	

containsKey(K)	

containsValue(V)	

List/Set	

add(E)	

remove(E)	

contains(E)	

List	Only	

add(int,	E)	

remove(int)	

get(int)	

Other	API	

The	enhanced	for	loop	

Collec&ons.sort(List)	

Arrays…	see	API	

Collec&ons	

EECS1022/Lespérance	 6	

§  A	Map<K,V>	is	represents	a	mapping	between	a	set	of	keys	
(of	type	K)	and	a	set	of	values	(of	type	V)	

§  Each	element	in	a	map	is	a	key-value	pair	

§  The	keys	must	form	a	set	and	all	be	dis&nct	

§  There	are	2	classes	that	implement	the	interface	Map<K,V>:		
TreeMap<K,V>	and	HashMap<K,V>	

§  	Use	map.put(k,v)	to	add	or	update	a	key-value	pair	

§  	Use	map.get(k)	to	retrieve	the	value	associated	with	key	k	

§  Other	methods:		remove(k,v),	containsKey(k),	
containsValue(v),	keySet(),	size(),	toString(),	etc.	

21	

Map<String,Integer>	m	=	new	HashMap<String,Integer>();	

m.put("John",23);		

m.put("Mary",22);		

m.put("Paul",19);	

System.out.println("Mary	is"	+	m.get("Mary"));	

m.put("Mary",21);	

System.out.println("Mary	is"	+	m.get("Mary"));	

22	

Map<String,Integer>	m	=	new	HashMap<String,Integer>();	

m.put("John",23);	m.put("Mary",22);	m.put("Paul",19);	

for	(String	k	:	m.keySet()){	

	System.out.println(k	+	"		is	"	+	m.get(k));	

}	

23	

Given	a	long	sentence,	find	all	its	words;	the	dis6nct	
ones	(regardless	of	case);	display	them;	sort	them;	
and	then	locate	the	longest	and	most	frequent	ones.	

24	

A	"word"	is	defined	as	a	sequence	of	characters	terminated	by	
space,	punctua6on,	or	end-of-string.		

1.  Use	split	with	a	regex	
2.  Turn	array	to	a	collec&on	
3.  Use	collec&on	API	

See	WordSmith.java	

Collec&ons	

EECS1022/Lespérance	 7	

§  Suppose		we	want	the	inverse	of	a	Map<K,V>	m	

§  Just	taking	the	set	of	all	pairs	value-keys	from		m	does	not	
work	because	the	values	may	not	be	unique	

§  One	solu&on	is	to	create	a	new	map	Map<V,	List<K>>	inv	
which	associates	each	value	v		in	m	to	the	list	of	all	the	keys	
that	m	maps	to	v	

§  E.g.	inverse	of	the	map			

	{"John"	=23,	"Paul"	=21,	"Mary"	=23}	would	then	be	
	{21=[”Paul"],	23=	["John",	"Mary"]}	

25	

public	sta&c	Map<Integer,	List<String>>	invert_all(Map<String,	Integer>	map){	

Map<Integer,	List<String>>	result	=	new		TreeMap<Integer,	List<String>>();	

for	(String	k	:	map.keySet(){	

				int	v	=	map.get(k);	

					if	(!result.containsKey(v){	

	 	List<String>	list	=	new	ArrayList<String>();	

	 	list.add(k);	result.put(v,list);	

				}		else	{	

	 	List<String>	exis&ng	=	result.get(v);	

	 	exis&ng.add(k);	

			}}	

	return	result;	

}	 26	

§  Addresses	ques&ons	such	as	How	much	&me	(or	space)	
does	a	given	algorithm	take	depending	on	the	size	of	the	
input?	

§  	That	is	if	N	is	the	size	of	the	input,	and	T(N)	is	the	running	
&me	of	the	algorithm	for	an	input	of	size	N,	we	want	to	
know	how	T(N)	grows	as	N	grows	

§  E.g.	How	long	does	it	take	to	sort	a	list	of	size	N?	
§  Running	&me	may	depend	on	the	actual	input	value	(e.g.	

list);	usually	we	simplify	by	looking	at	the	worst	case	

	

27	

§  Big-O	nota&on	is	used	to	characterize	how	fast	the	running	
&me	T(N)	of	the	algorithm	grows	as	the	size	of	the	input	N	
grows	

§  T(N)	is	O(f(N))	if		T(N)	≤	C	f(N)	for	all	N	≥	K	for	some	
constants	C	and	K	

§  That	is,	if		T(N)	is	always	less	than	f(N)	mul&plied	by	some	
constant	beyond	a	given	value	of		N	

	

28	

Collec&ons	

EECS1022/Lespérance	 8	

§  To	find	out	if	an	element	x	is	contained	in	an	unsorted			
List<Integer>	list	we	can	do	a	linear	search:	

int	result	=	-1;	boolean	found	=		false;	

for	(int	i	=	0;	i	<	list.size()	&&	!found;	i++)	{	

	int	e	=	list.get(i);	

	if	(e	==	x){	

	 	result	=	i;	found	=	true;	

	}	

}	

	
29	

§  This	is	essen&ally	what	the	contains()	method	does	

§  The	running	&me	is	O(N)	where	N	is	the	size	for	the	list	

§  This	is	because	in	the	worst	case	we	have	to	check	and	
compare	all	of	the	N	elements	of	the	list	to	x	

30	

§  To	search	a	sorted	list,	there	is	a	much	faster	algorithm,	
binary	search,	which	is	used	by	
Collec&ons.binarySearch(List<E>	l,	E	x)	

§  Compare	x	with	the	middle	element	of	the	list:	if	it	is	equal	
we	are	done,	and	if	it	is	less	we	can	eliminate	all	elements	
a{er	it,	and	similarly	if	it	is	greater;	then	repeat	with	the	
remaining	part	of	the	list	

§  So	a{er	each	comparison	we	cut	down	the	remaining	part	
of	the	list	by	half	

§  So	the	running	&me	is	O(lgN)	where	N	is	the	size	for	the	list	

31	

§  To	sort	a	list,	there	are	pre|y	fast	algorithms	such	as	
quicksort,	which	is	used	by	Collec&ons.sort(List<E>	l)	

§  The	running	&me	is	O(N	lgN)	where	N	is	the	size	for	the	list	

32	

Collec&ons	

EECS1022/Lespérance	 9	

ArrayList	
§  get(int)	and	add(E)	are		O(1)		
§  add(int,	E),	get(E),	contains(E),	remove(E),	and	remove(int)	

are	O(N)	

LinkedList	
§  get(int)	is	O(N)		
§  add(0,E)	is	O(1)	
	

33	

TreeSet	
§  add(E)	is	O(lgN)		
§  contains(E)	is	O(lgN)	
§  remove(E)	is	O(lgN)		

HashSet	
§  add(E)	is	O(1)			
§  contains(E)	is	O(1)	
§  remove(E)	is	O(1)	

Similar	for	TreeMap	and	HashMap	

34	

