
Collec&ons	

EECS1022/Lespérance	 1	

EECS1012	
MOBILE	COMPUTING	

PROF.	Y.	LESPÉRANCE	
Dept.	of	Electrical	Engineering	&	Computer	Science	

1	

§  Problem:	naming	a	bunch	of	things	
Cannot	use	variables	…	will	run	out	of	names!	

§  Solu&ons	
Tradi6onal	approach:	name	+	index	=	array	
Modern	approach:	object	with	API	=	list,	set,	map	

§  Comparison	
Arrays	have	no	API	and	suffer	from	fixed	alloca6on	
The	modern	collec6on	framework	has	a	rich	API		

§  But	we	occasionally	use	arrays	
For	compa6bility	with	low-level	API	(e.g.	split	and	args)	

2	

§  Represent	a	collec&on	of	en&&es	of	the	same	
type	

§  Declara&on:	type[]	name;	e.g.	int[]	bag;	

§  Instan&a&on:	new	type[size],	e.g.		
bag	=	new	int[100];	

§  Refer	to	elements	by	name[index]	,	e.g.	
bag[0]	=	123;		bag[1]	=	bag[0]	+	5;	

3	

§  name.length	represents	the	array’s	length	
§  Indices	go	from	0	to	length	–	1	
§ Mul&dimensional	arrays	can	also	be	used	

	

4	

Collec&ons	

EECS1022/Lespérance	 2	

If	we	pick	an	integer	in	[1,1M]	randomly,	how	likely	is	
it	to	get	one	whose	digit	sum	is	divisible	by	7?	

5	

Compute	the	probability	by	sampling	10%	of	those	integers	
and	store	the	sample	in	a	collec6on.	

1.  Use	Arrays	
See	SumDiv7_array.java	

2.  Use	Collec&ons	
See	SumDiv7_coll.java	

§  List	vs	Set	vs	Map	
List:	may	contain	duplicates	and	elements	are	ordered.	Set:	no	
duplicates	and	no	order.	Map:	key-value	pairs,	key	unique.	

§  The	Interfaces	(aka	Abstract	Data	Types)	
List<E>,	Set<E>,	and	Map<K,V>	(use	generics)	

§  The	Classes	(aka	Implementa&ons)	
List:	ArrayList	and	LinkedyList;	Set:	HashSet	and	TreeSet	
Map:	HashMap	and	TreeMap	

§  Common	APIs	
size(),	clear(),	iterator(),	toString()	
Methods	to	insert,	delete,	and	search	à	CRUD	

6	

7	

Basic	

size()	

clear()	

iterator()	

Map	

put(K,V),	get(K),	keySet()	

containsKey(K)	

containsValue(V)	

List/Set	

add(E)	

remove(E)	

contains(E)	

List	Only	

add(int,	E)	

remove(int)	

get(int)	

Other	API	

The	enhanced	for	loop	

Collec&ons.sort(List)	

Arrays…	see	API	

§  add(E	e)	on	a	set	returns	false	if	e	is	already	
in	it	(for	a	list	always	returns	true)	

§  remove(E	e)	returns	true	iff	e	is	found	in	the	
set	or	list;	for	a	list	removes	only	first	
occurrence	

§  Collec&ons.sort(List	<E>	l)	rearranges	l	to	
make	it	sorted	(according	to	natural	order)	

§  Arrays.asList(E[]	a)	returns	a	List	
representa&on	of	array	a		

8	

Collec&ons	

EECS1022/Lespérance	 3	

§  Traversing	a	List<E>	bag	i.e.	going	through	all	of	its	elements	
one	by	one,	is	a	common	opera&on:	

for	(E	e:	bag)	{	

	System.out.println(e);	

}	

§  Similarly	for	sets	

§  For	lists,	can	also	do	an	indexed	traversal:	
for	(int	i	=	0;	i	<	bag.size();	i++)	{	

	E	e	=	bag.get(i);	System.out.println(e);	

}	

	 9	

Given	a	list,	determine	whether	it	contains	duplicate	
elements.	

Can	be	done	in	3	ways:	

	

10	

1.  Sort	the	list	and	then	traverse	it	to	check	for	adjacent	
duplicates	

2.  Create	a	set	and	then	try	to	add	each	list	element	to	it	
checking	if	add	succeeds	

3.  Traverse	the	list,	and	for	each	element	traverse	the	list	
again	to	see	if	it	occurs	elsewhere	

Collec&ons.sort(bag);	

boolean	dis&nct	=	true;	

for	(int	i	=	0;	i	<	bag.size()	-	1;	i++)	{	

	dis&nct	=	dis&nct	&&	!bag.get(i).equals(bag.get(i+1));	

}	

§  Can	also	exit		as	soon	as	a	duplicate	is	found:		
for	(int	i	=	0;	i	<	bag.size()	–	1	&&	dis&nct;	i++)	{	

	dis&nct	=	!bag.get(i).equals(bag.get(i+1));	

}	

	
11	

Set<Integer>	tmp	=	new	HashSet<Integer>();	

boolean	dis&nct	=	true;	

for	(int	i	=	0;	i	<	bag.size()	;	i++)	{	

	dis&nct	=	dis&nct	&&	tmp.add(bag.get(i));	

}	

§  Can	also	exit		as	soon	as	a	duplicate	is	found:		
for	(int	i	=	0;	i	<	bag.size()	&&	dis&nct;	i++)	{	

	dis&nct	=	tmp.add(bag.get(i))	;	

}	

	
12	

Collec&ons	

EECS1022/Lespérance	 4	

boolean	dis&nct	=	true;	

for	(int	i	=	0;	i	<	bag.size();	i++)	{	

	int	x	=	bag.get(i);	

	 	for	(int	j	=	0;	j	<	bag.size();	j++)	{	

	 	int	y	=	bag..get(j);	

	 	dis&nct	=	dis&nct	&&	(i	=	j	||	x	!=	y);	

	}	

}	
Can	also	exit		as	soon	as	a	duplicate	is	found	by	adding	&&	
dis&nct	to	both	loop	condi&ons		

13	

Iterator<Integer>	outer	=	bag.iterator();	

boolean	dis&nct	=	true;	

while	(outer.hasNext()	&&	dis&nct)	{	

	Integer	x	=	outer.next();	

	Iterator<Integer>	inner=	bag.iterator();	

	while	(inner.hasNext()	&&	dis&nct)	{	

	 	Integer	y	=	inner.next();	

	 	dis&nct	=	!x.equals(y)	||	x	=	y;	

	}	

}	
	

14	

Given	a	long	sentence,	find	all	its	words;	the	dis6nct	
ones	(regardless	of	case);	display	them;	sort	them;	
and	then	locate	the	longest	and	most	frequent	ones.	

15	

A	"word"	is	defined	as	a	sequence	of	characters	terminated	by	
space,	punctua6on,	or	end-of-string.		

1.  Use	split	with	a	regex	
2.  Turn	array	to	a	collec&on	
3.  Use	collec&on	API	

See	WordSmith.java	

