
xStream: Outlier Dete‘x’ion in Feature-Evolving 
Data Streams 

Sarah Akhavan 
Hoorieh Marefat

!1



Paper Description

!2



Agenda

!3

Introduction

Related Work

Problem 
Definition

Proposed 
Method

Evaluation



Data Types

• static 
• row streaming 
• feature-evolving stream

!4



Data Types

!5

static data row-streaming data feature-evolving stream

Known Features

T
im

e

T
im

e

T
im

e

Known Features ٍEvolving Features



Key Challenges

• we cannot simply process and discard points 
• feature values may change 
• new features may emerge 

• dynamically allocated space for growing n and d 
• fastness of the technique

!6



Other Challenges

• non-stationarity of the data stream 
• curse of dimensionality 
• outliers at multiple scales or different subspaces

!7



Practical Cases For This Setting

• User Monitoring (e.g: Twitter) 
• Data Center Monitoring 
• Customer Behavior Tracking

!8
T
im
e

#art #cat #food



xStream 

• constant memory approach 
• processing each element in constant time 
• measures outlierness in multiple scales 
• handles non-stationary  
• accommodates static data and row-streaming data 

!9



Related Work

• Ensemble Methods  
• feature subspace selection  

• Streaming Methods 
• ensemble methods that partition the representation space 
• RS-Hash

!10



Comparing xStream with state-of-the-art outlier 
detection techniques

!11



Notation

• We have an incoming stream of elements 

• With each                            showing an update to a point            
• id: identifies each data point 
• f: is a feature name (a string) 
• 𝛿: magnitude of the update

!12



Problem Definition

• Problem: Outlier Detection in Feature-Evolving Data Streams 
• Given a stream                                  of triples                            
• Compute and maintain an outlier score for each evolving point such 

that outliers are scored higher than non-outlier points at any time t.

!13



Overview of the Steps

• Projecting high-dimensional feature space to a low-dimensional one 
• Estimate density of the neighbouring area of each data point 
• Giving outlierness score to each data point

!14



Proposed Method: xStream

• The method is built on the following components: 
1. StreamHash: subspace-selection and dimensionality reduction 

via sparse random projections 
2. Half-Space Chains: an efficient ensemble to estimate density at 

multiple scales 
3. Extensions to handle non-stationarity and evolving data points in 

the stream

!15



Random Projection

• Random projections are an efficient and effective method of 
reducing data dimensionality 

• In high-dimensional data, outliers often lie in low-dimensional 
subspaces => looking for outliers in selected subspaces of the data  

• Here a variant of random projections is used 
• Sparse random vectors with only 1/3 of the vector components 

being non-zero. 

!16



StreamHash

!17



Approximating Density

• To detect density-based outliers, approximate the density of each 
point by counting the number of its neighbours lying within some 
radius r.  

• Two issues with performing neighbourhood-counting directly:  
• Sensitive to the choice of scale 
• The number of neighbours at any scale tends to zero as the 

dimensionality increases 

!18

Dimensionality reduction via HashStream

Compute neighbours at multiple scales 
Via half-space chains



Half-Space Chain

!19



How To Compute Z?

!20



Multi-Scale Outlier Scoring

!21



Issues of Stream Progress

• The distribution of points may change as the stream progresses, 
causing bin-counts constructed in the past to no longer represent 
the current distribution of the data.  

• Additionally, triples in the data stream may update previously seen 
points.  

!22



Handling Non-Stationarity

• Non-stationarity is handled by maintaining separate bin-counts for 
an alternating pair of windows containing ψ points each, termed as 
current and reference windows.  

• On the arrival of (ψ + 1)th  new point, reference counts are replaced 
with current counts, and current counts are set to zero to begin 
processing the next window.

!23



Handling Evolving Data Points

• Points may evolve by receiving updates in the stream to either an 
existing feature or to a new, previously unseen feature.  

• In either case, it is required that the existing projected point y 
resides in main memory so as to update it quickly without accessing 
the disk.  
• A fixed-size cache of N projected points is maintained in 

memory.  
• Least-Recently-Updated (LRU) eviction protocol is used for the 

cache

!24



Time and Space Complexity

• Time complexity: 

• Space complexity: 
• xStream maintains 

• M half-space chains and 
• N evolving (projected) points

!25



Evaluation

• Static Setting 
• Row-stream 
• Evolving Stream

!26



Datasets Used For Evaluation 

!27



Static Stream

• iForest 
• HS-Tree 
• LODA 
• RS-Hash

!28



Friedman Test

!29



Nemenyi Test

!30



Row-Stream

• HS-Stream 
• LODA 
• RS-Hash

!31



!32

Mean average precision (MAP) and overall average precision (OAP) on Spam-SMS.

Mean average precision (MAP) and overall average precision (OAP) on Spam-URL.



Evolving Stream

!33



!34



!35


