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Data Types

• static 
• row streaming 
• feature-evolving stream
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Data Types
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Key Challenges

• we cannot simply process and discard points 
• feature values may change 
• new features may emerge 

• dynamically allocated space for growing n and d 
• fastness of the technique
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Other Challenges

• non-stationarity of the data stream 
• curse of dimensionality 
• outliers at multiple scales or different subspaces
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Practical Cases For This Setting

• User Monitoring (e.g: Twitter) 
• Data Center Monitoring 
• Customer Behavior Tracking
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xStream 

• constant memory approach 
• processing each element in constant time 
• measures outlierness in multiple scales 
• handles non-stationary  
• accommodates static data and row-streaming data 
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Related Work

• Ensemble Methods  
• feature subspace selection  

• Streaming Methods 
• ensemble methods that partition the representation space 
• RS-Hash
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Comparing xStream with state-of-the-art outlier 
detection techniques
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Notation

• We have an incoming stream of elements 

• With each                            showing an update to a point            
• id: identifies each data point 
• f: is a feature name (a string) 
• 𝛿: magnitude of the update
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Problem Definition

• Problem: Outlier Detection in Feature-Evolving Data Streams 
• Given a stream                                  of triples                            
• Compute and maintain an outlier score for each evolving point such 

that outliers are scored higher than non-outlier points at any time t.
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Overview of the Steps

• Projecting high-dimensional feature space to a low-dimensional one 
• Estimate density of the neighbouring area of each data point 
• Giving outlierness score to each data point
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Proposed Method: xStream

• The method is built on the following components: 
1. StreamHash: subspace-selection and dimensionality reduction 

via sparse random projections 
2. Half-Space Chains: an efficient ensemble to estimate density at 

multiple scales 
3. Extensions to handle non-stationarity and evolving data points in 

the stream
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Random Projection

• Random projections are an efficient and effective method of 
reducing data dimensionality 

• In high-dimensional data, outliers often lie in low-dimensional 
subspaces => looking for outliers in selected subspaces of the data  

• Here a variant of random projections is used 
• Sparse random vectors with only 1/3 of the vector components 

being non-zero. 
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StreamHash
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Approximating Density

• To detect density-based outliers, approximate the density of each 
point by counting the number of its neighbours lying within some 
radius r.  

• Two issues with performing neighbourhood-counting directly:  
• Sensitive to the choice of scale 
• The number of neighbours at any scale tends to zero as the 

dimensionality increases 
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Dimensionality reduction via HashStream

Compute neighbours at multiple scales 
Via half-space chains



Half-Space Chain
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How To Compute Z?
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Multi-Scale Outlier Scoring
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Issues of Stream Progress

• The distribution of points may change as the stream progresses, 
causing bin-counts constructed in the past to no longer represent 
the current distribution of the data.  

• Additionally, triples in the data stream may update previously seen 
points.  
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Handling Non-Stationarity

• Non-stationarity is handled by maintaining separate bin-counts for 
an alternating pair of windows containing ψ points each, termed as 
current and reference windows.  

• On the arrival of (ψ + 1)th  new point, reference counts are replaced 
with current counts, and current counts are set to zero to begin 
processing the next window.
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Handling Evolving Data Points

• Points may evolve by receiving updates in the stream to either an 
existing feature or to a new, previously unseen feature.  

• In either case, it is required that the existing projected point y 
resides in main memory so as to update it quickly without accessing 
the disk.  
• A fixed-size cache of N projected points is maintained in 

memory.  
• Least-Recently-Updated (LRU) eviction protocol is used for the 

cache
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Time and Space Complexity

• Time complexity: 

• Space complexity: 
• xStream maintains 

• M half-space chains and 
• N evolving (projected) points
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Evaluation

• Static Setting 
• Row-stream 
• Evolving Stream
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Datasets Used For Evaluation 
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Static Stream

• iForest 
• HS-Tree 
• LODA 
• RS-Hash
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Friedman Test
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Nemenyi Test
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Row-Stream

• HS-Stream 
• LODA 
• RS-Hash
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Mean average precision (MAP) and overall average precision (OAP) on Spam-SMS.

Mean average precision (MAP) and overall average precision (OAP) on Spam-URL.



Evolving Stream
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