Variational

Autoencoders

Presented by:
Jason Yu and Rajshree Daulatabad

% © 00 00 00 O
@



Topics Covered

Before we dive into VAEs - Some General Concepts
VAE Implementation details and the Math

Intuitively Understanding VAE

VAE Applications & Examples

VAE Advantages and Limitations



Overview & Terminology

Unsupervised
Learning

Generative
Model

Maximum
Likelihood
Estimation

LA VANNANYTYTT YT
S VNNNYTYT T
S PANNYYTTT T
/S0 VANNTT T T T T
/S VN YT 77T T T T
S/ VYT 7277777171
JSS/S, /7778339777777
rr s 7 /7 7788899777777
S5 S55585§888S59997777 7
SS5ES555553335%999777777117
SSESE6663335%3Y99797711
SEFSLSEE6 6663222 V999T7711N
PPEE 6606062222232 949g=m7
IO 6 060668222 2AALYYLY™ ™
.aaaaaooooaaa;..uqqq&m
2200000000606 LoscyyLILiY)

ua&&OOOOOOOGbuuuqqqu
OO0 O00O0000LLLLLUYLIEK
o000 00000LLLLLUWYL
o000 O0OO0O0OHLLLLWLWUYY

Representation
or Feature
Learning

Probabilistic
Model

Kullback-Liebler
Divergence



Generative Model vs
Discriminative model

Discriminative models learn the (hard or
soft) boundary between classes.

Discriminative classifier model the
posterior p(y|x) directly, or learn a direct
map from inputs x to the class labels.

Generative models model
the distribution of individual classes.

Generative classifiers learn a model of
the joint probability , p(x,y), of the inputs x
and the label y, and make their predictions
by using Bayes rules to calculate P(y|x) and
then picking the most likely label vy.

Discriminative

Generative




Probabilistic Model

The textbook definition of a VAE m N
Is that it “provides probabilistic ' g , | " |

descriptions of observations in
latent spaces.”

In plain English, this means
VAEs store latent attributes as
probability distributions.



Maximum Likelihood
Estimation (MLE)

Traditional MLE Approach

Maximum likelihood
estimation (MLE) is a method

of estimating the parameters of « We are given a finite sample from a data distribution
a statistical model, given X = {z|z ~ pgata(z)}, | X| = n
observations. MLE attempts to | -

_ « We construct a parametric model Pmodel (Z: /) for the
find the parameter values that distribution, and build a likelihood

maximize the Ilkellhood function, L(0;X) = H Prmodel (23 0)
given the observations r€X

* In practice, we optimize through MCMC or other means, and
obtain

Oopt = arg 1119111{— InL£(6; X)}




KL Divergence

o Kullback-Leibler (KL) divergence measures how
“different” two probability distributions are.

 KL-divergence is better not to be interpreted as a
"distance measure" between distributions, but rather as a
measure of entropy increase due to the use of an
approximation to the true distribution rather than the

true distribution itself.



Variational

W
S m

0,
Q)
O
Q

'
-

@
O

e o

l X

& Implementation Detail




Probabilistic Models

Discriminative Models
P(Y[X)

Generative Models



Probabilistic Models

Discriminative Models

Generative Models

P(XY)



Probabilistic Models

Discriminative Models

P ( “Cat”

Generative Models

“Cat” )




Probabilistic Models

Discriminative Models

P ( “Cat”

Generative Models




Latent Variables

Deaths vs Time

AN
)

Deaths (Millions)
— W
) o

0
1990 1995 2000 2005 2010 2015

X

Observed Variable



Latent Variables

Deaths vs Time

AN
Ol
|

Deaths (Millions)
— W
6) o

0
1990 1995 2000 2005 2010 2015

X

Observed Variable

Population (Billions)

Population vs Time

o))
|

AN

N

0
1990 1995 2000 2005 2010 2015

Z
Latent Variable



Latent Variables




Latent Variables

Glasses

No Glasses

L z

Observed Variable Latent Variable



Theory
And
Intuition






Modeling Data



Modeling Data



Modeling Data

P(X) = /P(X,z) dz



Modeling Data

P(X) = /P(X\Z)P(z)dz






Modeling Data

How Is

/P(X - P(z)

defined?




Transforming Distributions

¥

z <+ N(0,1)



Transforming Distributions

° o %,
:‘00‘ 0 ® o
e ‘.. o
® 0 o @ “
® ® o 00
@ o ° O

z < N(0,1) f(2)



Modeling Data



Modeling Data

P(z) ~N(0,1)



Modeling Data

P(z) ~N(0,1)



Modeling Data

P(z) ~N(0,1)

P(Xl|z) # f(z)



Modeling Data

P(z) ~N(0,1)

N(f(z),aQ 1)



Modeling Data



Modeling Data

P(z) ~N(0,1)

P(X|2) = N(f(z),0%*I)



Modeling Data

P(z) ~N(0,1)

P(X|z:0)=N(f(z;0),0°*I)



First Objective

argmax Z P(x;0)
0 xeD



First Objective

argmax Z log( P(z;0))



First Objective

argmax Z log(/P(x\z; 0)P(z)dz )

0 rxecD



First Objective

argmax Z lOg(/P(x\z; )P dz )

0 rxeD



First Objective

argmaXZlog( P(xz|z;0)P(z)d~)



P(z|z;0)
Many of these values are close to 0

z < P(Z|r)



First Objective

2
\

m > P(x]z0)P(z2)

z < P(Z|z)

z < P(Z|x)



First Objective



Second Objective

We want:

Q(Z) = P(Z|x)

Second objective

argmin D|Q(2)||P(Z|X),



Kullback-Leibler Divergence

DIP||Q]



Kullback-Leibler Divergence

/_OO p(x) log pz) dx

q(x)




Kullback-Leibler Divergence

Ly~ P ZOQ




Kullback-Leibler Divergence

Lenp [logp(z) — log q(x)]

DIP|IQ] =0, P=Q



Analysing the Second
Objective

D|Q(2)[|P(z]X)]



Analysing the Second
Objective

D|Q(2)[|P(z]X)]

0.~ |logQ(z) — log P(2|X)]




Analysing the Second
Objective

D|Q(2)[|P(z]X)]

0.~ |logQ(z) — log P(X|z) — log P(2)| — log P(X)




Analysing the Second
Objective

log P(X) — D[Q(2)||P(z]| X)]

<1:,ZNQ [ZOQ P(X‘Z)] N

.nq [ log Q(z) — log P(z)]




Analysing the Second
Objective

log P(X) = DIQ(2)[|P(2|X)]

| |

C.~q [log P(X|z

v

| = DlQ(2)[|P(2)




log P(X) — D|Q(2)||P(2|X)



3. llog P(X|2)] = DIQ(2)| | P(2)




Analysing the Second
Objective
log P(X) — DIQ(2)||P(2|X)]

3. llog P(X|2)] — D[Q(2)|| P(2)




Analysing the Second
Objective
log P(X) — DIQ(2)||P(2|X)]

3. [log P(X|2)] - DIQ(2)||P(2)




Analysing the Second
Objective
log P(X) — DIQ(2)||P(2|X)]

U2~ llog P(X|2)| = D[Q(2)||P(2)




P(X|z) 7 Q(z) P(z)

Tractable



Conditioning ()

D|Q(2)||P(2|X)]



Conditioning ()



Conditioning ()

Q(z]x)



Conditioning ()

Q(z|z;0)



Conditioning ()

Q(Z|_x; 0)

N (u(x;0),3(x;0))



Recap

argmax Z log P(x;0)

xeD



Recap

argmax Z log P(x;0)

xecD



Recap

argmax Z log P(x;0)
0 xeD
z

arggnin DIQ(Z|X;0)||P(Z|X)]



Recap

argmax Z log P(x;0)
0 xeD
2

ArgImin DIQ(Z|X;0)||P(Z]| X)]

5...ollog P(X|%0)] — DIQ(2]X; 0)[|P(2)]




“Autoencoder” Training

Ny
Xz
N (p(;0), 5 (x;0)) o N(f(z0),0%*I)
| 2 l
o 0 || =
“Encoder” An_ “Decoder”



{
” Tes
toencoder
“Auto

2 S
N (f(z0),

T
I) l
5
P& 0o
. P(x
“Decoder”




Implementation




Using NN for VAE - but there’s a
problem!

* Imagine Encoder - Q(z|X) is a neural net

e How do we get z? - we could sample z from a Gaussian which
parameters are the outputs of the encoder.

e But how do we train without gradient descent? Sampling
directly wont do!!



Reparameterization trick

mean vector

sampled
latent vector

Encoder Decoder
Network Network

(conv) (deconv)

standard deviation
vector

Z=+00¢

Z=U+00¢

where € ~ Normal(0,1)




Backpropagation

Original form Reparameterised form

. Deterministic node [Kingma, 2013]
[Bengio, 2013]

. : [Kingma and Welling 20141
. - Random node |Rezende et al 20141




Intuitively
Understanding
Variational
Autoencoders



Standard Autoencoder

* The entire network is usually
trained as a whole. The loss
function is usually either the
mean-squared error or Cross-
entropy between the output
and the input, known as
the reconstruction loss, which
penalizes the network for
creating outputs different from
the input.




The problem with standard
autoencoders

e Standard autoencoders learn to generate compact
representations and reconstruct their inputs well, but
asides from a few applications like denoising
autoencoders, they are fairly limited.

e The fundamental problem with autoencoders, for
generation, is that the latent space they convert their
iInputs to and where their encoded vectors lie, may not be
continuous, or allow easy interpolation.



How Variational Autoencoder
solves the problem

Variational Autoencoders (VAES) have one fundamentally unique property that
separates them from vanilla autoencoders, and it is this property that makes
them so useful for generative modeling: their latent spaces are, by

design, continuous, allowing easy random sampling and interpolation.



How VAE solves this
problem

i Input

It achieves this by doing

something that seems rather
surprising at first: making its

encoder not output an encoding |
vector of size n, rather,

outputting two vectors of size n: Sample - 30
a vector of means, M, and

another vector of standard
deviations, o.




How VAE solves this

Intuitively, the mean
vector controls
where the encoding
of an input should be
centered around,
while the standard
deviation controls
the “area”, how
much from the mean
the encoding can
vary.

problem

Standard Autoencoder Variational Autoencoder
(direct encoding coordinates) (p and o initialize a probability distribution)

As encodings are generated at random from anywhere inside the “circle” (the distribution), the decoder
learns that not only is a single point in latent space referring to a sample of that class, but all nearby
points refer to the same as well. This allows the decoder to not just decode single, specific encodings
in the latent space (leaving the decodable latent space discontinuous), but ones that slightly vary too,
as the decoder is exposed to a range of variations of the encoding of the same input during training.



How VAE solves this
problem

What we ideally want are encodings, all of which are as close as
possible to each other while still being distinct, allowing smooth
interpolation, and enabling the construction of new samples.



How VAE solves this
problem

e |In order to force this, we introduce the Kullback-Leibler
divergence (KL divergence) into the loss function. The KL
divergence between two probability distributions simply
measures how much they diverge from each other.

e |ntuitively, this loss encourages the encoder to distribute
all encodings (for all types of inputs, eg. all MNIST
numbers), evenly around the center of the latent space. If
it tries to “cheat” by clustering them apart into specific
regions, away from the origin, it will be penalized.

VAE Loss function = Reconstruction Loss + KL Divergence loss



Optimizing purely for
reconstruction loss

e For example, training an autoencoder
on the MNIST dataset, and
visualizing the encodings from a 2D
latent space reveals the formation of
distinct clusters. This makes sense,
as distinct encodings for each image
type makes it far easier for the
decoder to decode them. This is fine
if you’re just replicating the same
iImages.

* But when you’re building
a generative model, you don’t want
to prepare to replicate the same
Image you put in. You want to
randomly sample from the latent
space, or generate variations on an
input image, from a continuous latent
space.




Optimizing using pure KL
divergence loss

Now, using purely KL loss
results in a latent space results
INn encodings densely placed
randomly, near the center of the
latent space, with little regard for
similarity among nearby
encodings. The decoder finds it
Impossible to decode anything
meaningful from this space,
simply because there really isn’t
any meaning.




Optimizing using both reconstruction
loss and KL divergence loss

Optimizing the two together, however, results
in the generation of a latent space which
maintains the similarity of nearby encodings
on the local scale via clustering,

yet globally, is very densely packed near the
latent space origin (compare the axes with
the original).

Intuitively, this is the equilibrium reached by
the cluster-forming nature of the
reconstruction loss, and the dense

packing nature of the KL loss, forming
distinct clusters the decoder can decode.

This is great, as it means when randomly
generating, if you sample a vector from the
same prior distribution of the encoded
vectors, N(0, I), the decoder will successfully
decode it. And if you’re interpolating, there
are no sudden gaps between clusters, but

a smooth mix of features a decoder can
understand.




Vector arithmetic

* So how do we actually produce these
smooth interpolations we speak of?
From here on out, it’s simple vector
arithmetic in the latent space.

e For example, if you wish to generate a . _
new Sample halfway between two Classical music sample vector
samples, just find the difference between
their mean (M) vectors, and add half the
difference to the original, and then
simply decode it.

* What about generating specific features,
such as generating glasses on a face?
Find two samples, one with glasses, one
without, obtain their encoded vectors
from the encoder, and save the
difference. Add this new “glasses” Face without glasses
vector to any other face image, and o _
deCOde i-t. AQdINg new Teatures to samples




Advantages of VAEs

While using generative models,

Increased width
one of our goal is to generate a
random, new output which looks o
similar to the training data. .

So we are trying to alter or Glasses
explore variations on data which
we already have in random way
or in a desired, specific
direction. This is where VAEs
work better than any other
method currently available.




Applications



Applications

VAEs work with remarkably diverse types of data,
sequential or non-sequential, continuous or discrete,
even labelled or completely unlabeled, making them
highly powerful generative tools.

You could indeed, replace the standard fully-connected
dense encoder-decoder with a convolutional-
deconvolutional encoder-decoder pair, to produce great
synthetic human face photos.

Producing purely synthetic music -

Producing synthetic text, speech

Forecasting from Static Images using Variational
Autoencoders

Producing drawing -

Application in Faster training of Reinforcement Learning

LA TP VANNNYTT T
S VNNNTT T T
VA A A A B R T T W W W M By B By By B
LSS VANNYNTT T T T T
ST VNTT777TTT
S/ VY T 7777 TTT
S/ /7771883399 777T7T71
F A7 7EERSTIY 777770
S5 S55558885599977711
S5555553333399977711
SSES5E666333833949977110
FFEEE6E6L32B3Vv999711N
BEE66606622222%9949¢mmn
P IIE6660662222004LY""
2220000006066 &scaqyLiyr
QRO0000000606LoyYLLIY)

0000000000 bLLUYLHEL
o000 000000LLLLLUVYLEL
coooo0000000LLLLLUWYL
coooooooOO00NKLLLLWWWY

lo‘o] "‘-E'L’;T - a T

— BT
g .

Recansrucion f;h\ W @" é(’\o

(= ) \= )| = /

BBEBGABEGREO
(5068 40 LI s 5 ) R B DJJQNOSWOO
£ oud 5 e B 0 2 S0 R ey uugﬁggﬁgom
e WO 30 41 A3 3 %0 TH Y SRBHHHEE

'
\ 5=

45055 P R Ak Y

Qﬁ?ﬂtjgyﬁfgjajéfiikﬂ

@@

C‘Q@U SN v
@DKj 5 &%Q{immz
EEFNE AL E o

Example input sketches and sketch-rnn generated reproductions (Top),
Latent space interpolation between the four reproduced sketches (Bottom).

0


https://magenta.tensorflow.org/music-vae
https://magenta.tensorflow.org/music-vae
https://magenta.tensorflow.org/assets/sketch_rnn_demo/multi_vae.html
https://magenta.tensorflow.org/assets/sketch_rnn_demo/multi_vae.html
https://magenta.tensorflow.org/assets/sketch_rnn_demo/multi_vae.html
https://www.youtube.com/watch?v=KLLKNgzaDW4

Limitations



Limitations and Open issues

e The choice of approximate posterior distribution is one of the
core problems in variational inference. Most applications of
variational inference employ simple families of posterior
approximations in order to allow for efficient inference, focusing
on mean-field or other simple structured approximations. This

restriction has a significant impact on the quality of inferences
made using variational methods.

e Example - If we use the Gaussian as likelihood for image-
generation models, we end up with blurry reconstructions



