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What are autoencoders?

● Type of Artificial Neural Network
● Used to learn efficient data coding

○ Unsupervised (no labels)
○ Learn a representation (encoding) for a set of data 

typically for dimensionality reduction
○ Learning generative models 
○ Could also be used for image compression

https://en.wikipedia.org/wiki/Generative_model


What is Dimensionality Reduction?

● The process of reducing the number of random 
variables under consideration by obtaining a set of 
principal variables

● Divided into feature selection and feature extraction

https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Feature_extraction


What are autoencoders used for?

● Widely used for learning generative models of data.
○ New images, new text, etc...
○ Given an observable variable X and a target variable Y, a generative 

model is a statistical model of the joint probability distribution on X × Y, 
P(X,Y)
■ that gives the probability that each of X, Y, ... falls in any particular 

range or discrete set of values specified for that variable

● Some of the most powerful AI in the 2010s have involved 
sparse autoencoders stacked inside of deep neural 
networks.

https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Observable_variable
https://en.wikipedia.org/wiki/Target_variable
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Joint_probability_distribution


What are autoencoders used for?



What are autoencoders used for?

● An autoencoder learns to compress data from the input 
layer into a short code, and then uncompress that code 
into something that closely matches the original data. 

● This forces the autoencoder to engage in dimensionality 
reduction, for example by learning how to ignore noise.



Example

● Some architectures use stacked sparse autoencoder layers for 
image recognition. 

● The first autoencoder might learn to encode easy features like 
corners, the second to analyze the first layer's output and then 
encode less local features like the tip of a nose, the third might 
encode a whole nose, etc., until the final autoencoder encodes the 
whole image into a code that matches (for example) the concept of 
"cat".



Another example

● An alternative use is as a generative model: for example, if a system 
is manually fed the codes it has learned for "cat" and "flying", it may 
attempt to generate an image of a flying cat, even if it has never seen 
a flying cat before.



Structure
● Architecturally, the simplest form of an autoencoder is a feedforward, 

non-recurrent neural network
○ A feedforward neural network is an artificial neural network 

wherein connections between the nodes do not form a cycle.
■ You provide an input, and they provide an output. No storage 

capability. 
■ Recurrent neural networks have state. This means that 

they retain some of the activation from the previous input 
and feed it in to the current calculations. 
● better suited for dealing with sequences, time series, etc 

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network


Structure



Structure - Multilayer perceptron
● An MLP consists of, at least, three layers of nodes: an input layer, 

one or more hidden layers and an output layer 
● The output layer having the same number of nodes as the input 

layer, and with the purpose of reconstructing its own inputs 
(instead of predicting the target value Y given inputs X)



Structure - Multilayer perceptron

● Autoencoders are unsupervised learning models.
○ Learns from test data that has not been labeled, classified or 

categorized
○ Identifies commonalities in the data and reacts based on the 

presence or absence of such commonalities in each new 
piece of data

https://en.wikipedia.org/wiki/Unsupervised_learning


Structure 
● An autoencoder always consists of two parts, the encoder and the 

decoder, which can be defined as transitions      and      such that:

Input -> Feature

Feature -> Input



Structure 
● In the simplest case, where there is one hidden layer.
● The encoder stage of an autoencoder takes the input 

and maps it to 

● This image     is usually referred to as code, latent variables, or 
latent representation

● Here,     is an element-wise activation function such as a sigmoid 
function or a rectified linear unit.

●    is a weight matrix and    is a bias vector

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Rectified_linear_unit


Bias unit 
● A bias unit is an "extra" neuron added to each pre-output layer 

that stores the value of 1. Bias units aren't connected to any 
previous layer and in this sense don't represent a true "activity". 
They can contribute to the output of the ANN



Bias unit 
● When we change our weight w1, we will change the gradient of the 

function to make it steeper or flatter. But what about shifting the 
function vertically? In other words, what about setting the 
y-intercept. This is crucial for many modelling problems! Our optimal 
models may not pass through the origin.



Structure 



Structure 

● Where      ,      , and        for the decoder may differ in general from the 
corresponding     ,      , and     for the encoder, depending on the 
design of the autoencoder.



Variations

● Various techniques exist to prevent autoencoders from learning the 
identity function and to improve their ability to capture important 
information and learn richer representations



Training
To train an autoencoder we must minimize 

the construction error:

min||x−x˜||^2

Typically done through back-propagation



Pre-training
Autoencoders suffer from all the same problems as neural networks:

- Training can lead to poor local solutions
- Very slow to train
- Vanishing gradient: As the error is propagated backwards it gets very small

Hinton proposed a new way of pre-training the networks



Pre-training
Deep belief networks

Treat each neighbouring set of 2 layers as a restricted Boltzmann machine to 
train.

Then apply backpropagation

A restricted Boltzmann machine is a generative stochastic artificial neural network 
that can learn a probability distribution over its set of inputs.

https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Stochastic_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Probability_distribution


Denoising Autoencoder

● Take a partially corrupted input whilst training to recover the original 
undistorted input.

● This technique has been introduced with a specific approach to good 
representation



Denoising Autoencoder

● A good representation is one that can be obtained robustly from a 
corrupted input and that will be useful for recovering the 
corresponding clean input

○ The higher level representations are relatively stable and robust 
to the corruption of the input;

○ It is necessary to extract features that are useful for 
representation of the input distribution.

● To train an autoencoder to denoise data, it is necessary to perform 
preliminary stochastic mapping            in order to corrupt the data 
and use    as input for a normal autoencoder

https://en.wikipedia.org/wiki/Robustness_(computer_science)


Sparse Autoencoder
In sparse autoencoders there are more hidden units than inputs. 

We introduce a new concept called the sparsity constraint.

This is used to lower the activations of the hidden layers. 

We want to lower how many nodes in the hidden layers get activated because 
then they can specialize to detect certain features. 



Sparse Autoencoder
k-Sparse Autoencoders (Makhzani et al., 2013)

This implementation picks the k-highest 
activated hidden nodes and 0s out the rest.

The error is then only back-propagated 
through the active nodes



Sparse Autoencoder
Throughout training, k is set to a lower value each time so the appropriate neuron 
for each representation can be learned. 

This increases the representation space for the possible inputs.

The features learned will also be more global with lower values of k.

For higher values of k the features learned become more specific.

Can be thought as introducing an information bottleneck 



Example
From (Makhzani et al., 2013)

Each box corresponds 
to a learned feature

For higher values of k: 
more specific

Best results with k=40



Sparse Autoencoder L1 Regularization
Another way of introducing the sparsity constraint:

Apply an L1 normalization term to the loss function for activations

L1 norm: |a| = sqrt(a1^2 + a2^2 ... + an^2)

This prevents overfitting by penalizing very large values of individual as and 
favoring very small values of a, therefore introducing sparsity.  



Contractive Autoencoder
Aim is to make the encoder robust to small changes in the input for representation. 

Done by adding a regularizing term to the cost function for the encoder.

This is the Frobenius norm of the Jacobian matrix for the encoder activation 
sequence, with respect to the input



Contractive Autoencoder
Frobenius Norm - Vector norm, L2 norm

Jacobian matrix - matrix of all first-order partial derivatives of a vector-valued 
function.

Regularizing term: 



Similarities
This will penalize large increases in the activation values with respect to the input. 

Similar to sparse autoencoders (L1 norm) as it favours low values for activations.

Similar to denoising autoencoders as it promotes robustness. Difference is that 
denoisers favour the reconstruction and contractive autoencoders favour the 
encoder function.

Important to keep in mind for use case. (eg. Good for classification since it relies 
on the encoder.)



Relationship with PCA
PCA - converting a set of possibly correlated variables into uncorrelated values 
called principal components.

Autoencoders can be used to approximate these principle components.

This can be done by using linear activations and only one hidden layer in the 
autoencoder. 



Relationship with PCA
The weights of the new Autoencoder with one layer can be used with Singular 
Value Decomposition to extract the principal components.

Singular Value Decomposition - Factorization of a real or complex matrix

From Principal Subspaces to Principal Components with Linear 
Autoencoders:

https://arxiv.org/abs/1804.10253

https://arxiv.org/abs/1804.10253


Advantages over PCA
PCA only is restricted to a linear map where Autoencoders can learn can learn 
non-linearities if more hidden layers are used. 

Therefore, if you are using an autoencoder with one hidden layer, then it is 
probably better to use PCA to avoid training a NN and all of the other 
disadvantages that come with NNs.


