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Abstract

When monitoring sensory data (e.g., from a wearable de-
vice) the context oftentimes changes abruptly: people move
from one situation (e.g., working quietly in their office) to
another (e.g., being interrupted by one’s manager). These
context changes can be treated like concept shifts, since
the underlying data generator (the concept) changes while
moving from one context situation to another. We present an
entropy based measure for data streams that is suitable to
detect concept shifts in a reliable, noise-resistant, fast, and
computationally efficient way. We assess the entropy mea-
sure under different concept shift conditions. To support
our claims we illustrate the concept shift behavior of the
stream entropy. We also present a simple algorithm control
approach to show how useful and reliable the information
obtained by the entropy measure is compared to a ensemble
learner as well as an experimentally inferred upper limit.
Our analysis is based on three large synthetic data sets rep-
resenting real, virtual, and a combination of both concept
drifts under different noise conditions (up to 50%). Last
but not least, we demonstrate the usefulness of the entropy
based measure context switch indication in a real world ap-
plication in the context-awareness/wearable computing do-
main.

1 Introduction

In real-world applications the mining of data streams,
rather than time independent data, is increasingly important.
In many applications data (e.g., from the financial indus-
try, sensor data, multimedia content) is gathered over time,
which raises the problem that the concepts to be learned
may drift (i.e., change) over time [5]. Also, the increasing
amount of data (e.g., multimedia content, data warehouses)
and the limitation of computing power due to miniaturiza-
tion (e.g., wearable computing) call for faster and more
resource friendly algorithms. The motivation for this pa-

per is a real-world problem which stands exemplary for the
problems mentioned above – the analysis of sensor data on
wearable devices. In our research on context-awareness [1],
where we learned classifiers predicting peoples’ anticipated
behavior based on sensory input, we found that contexts (or
contextual situations) switch rather than gradually change.
We also found, that contextual information could be reused,
even for new, not yet encountered situations. Therefore,
an ongoing monitoring of the sensor stream is needed. An
online pattern matching mechanism comparing the sensor
stream to the entire library of already known contexts is,
however, computational complex and not yet suitable for
today’s wearable devices. One solution is to indicate pos-
sible candidates (or hot spots) for context changes limiting
the computationally intensive context (re-)determination on
those candidates. Thus, a computationally “cheap” tech-
nique to find such context-switch candidates would be very
helpful. From the machine learning point of view the con-
text generating the sensor data can be viewed as the un-
derlying concept generating the data stream and the con-
text switches can be viewed as “abrupt concept drifts” also
referred to as concept shifts. This paper introduces an
entropy-based measure to detect concept shifts. In the fol-
lowing we will show that this measure is very sensitive to
concept shifts while remaining noise-tolerant. Additionally,
it allows to distinguish between different shift intensities.
In order to be able to assess this measure, we introduce a
coarse concept shift adapting algorithm, which we show to
(1) provide mostly a better prediction quality than conven-
tional approaches, (2) require limited computational power,
(3) exhibit quick reaction time, and (4) show good perfor-
mance under noisy conditions. After the assessment of the
algorithm on synthetic data sets we apply our approach to
sensor data obtained by a context-aware wearable comput-
ing setup [1], where the entropy measure clearly indicates
context switches on the basis of audio and accelerometer
recordings.

The next section provides a short review on the related
work relates our contributions to other projects in the field.
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Section 3 introduces our novel concept shift measure and
algorithm. To evaluate our proposed measure and algo-
rithm, section 4 presents the experimental setup, synthetic
data sets, and benchmarks including an (experimental) up-
per limit for the learning algorithms used in this study. The
following sections present/discuss the results and are fol-
lowed by a presentation of our approach’s performance on
the real-world data set. We close with the limitations, future
work and a final conclusion section.

2 Related Work

In his survey paper Tsymbal defines concept drifts as fol-
lows: “In the real world concepts are often not stable but
change with time. ... Often these changes make the model
built on old data inconsistent with the new data, and reg-
ular updating of the model is necessary. This problem is
known as concept drift,...” [5]. Obviously, drifts can oc-
cur suddenly (abruptly, instantaneously) or gradually. Since
this paper is motivated by the problem of indicating switch-
ing contexts from sensor data, it focuses solely on sudden
concept drifts, which we call concept shifts1. Widmer and
Kubat [8] differentiate between changes in the actual target
concept called real concept drifts and changes in the distri-
bution called virtual concept drifts. Our work distinguishes
itself from previous studies in the following ways. First,
we introduce novel synthetic data sets based on the idea of
a rotating hyperplane [7]. This setup allows us to investi-
gate real and virtual drifts independent of each other, which
supports a comprehensive assessment of concept drift ap-
proaches. Second, we are the first to benchmark our ap-
proach to an experimentally determined upper limit. Third,
our main contribution is the introduction of an entropy-
based measure as concept shift indicator, which is able to
quantify the intensity of the shift. To be able to assess the
power of the measure, we introduce a simple window-based
algorithm using the entropy measure. This algorithm shows
it’s strength compared to ensemble classifiers both with re-
gards to quality and computational performance on the syn-
thetic data set. Last but not least, we show the usefulness
of the measure in the context of a real-world wearable com-
puting data set.

3 Entropy and Concept Shift Adaption

In this section we motivate and introduce the entropy
measure applied on data streams. Our approach bases on
the following assumptions: 1) As long as the distribution of
older instances (features and target values) is similar to the
distribution of new instances no concept drift occurred. 2)

1We have strong indication that our approach also holds for gradual
drifts, but such an investigation goes beyond the scope of this paper.

A distribution difference between older and more recent in-
stances indicates a change in the target concept. Hence, the
current model may be outdated and needs to be adjusted.
To measure the distribution inequality we make use of the
entropy to compare old and new instances of a data stream.
If two distributions are equal, the entropy measure results
in a value of 1, if they are absolutely different the measure
will result in an value of 0. Although entropy is well known
from information theory as a measure for information con-
tent - and its application, thus, is self-evident - we make use
of it mainly because of its symmetry and additive properties.
This section first specifies how to tailor the entropy mea-
sure for data-streams and and we introduce a simple coarse
instance-selection algorithm, which allows us the evaluation
of the measure in the next sections.

3.1 Calculating Entropy on Data Streams

To use Shannon’s entropy in the context of data streams
we have to adapt it. To that end we chose the sliding window
technique, which compares two windows, one representing
older and the other representing more recent instances in
the stream. Essentially, we compare the two windows by
counting and comparing all instances with respect to their
class and stream membership. Additionally, we discretize
the range of instance values to a fixed number of bins to
take the approximate value distribution into account.

We define a data stream as a sequence consisting of
sequentially ordered tuples �di in time ti, where i ∈
(1, 2, 3, ...). Each tuple �di consists of S feature streams s
and one label stream l, formally �di := (�si, li), where �si is
the vector of all feature stream instances sni at time ti. The
domain of the label stream l is discrete and contains all class
values c ∈ C. In the following evaluation on the synthetic
data sets, for example, we will limit all experiments to 2
class problems. Let Hi be the resulting entropy at time ti.
Hi is defined as the mean of all data stream entropies His

at time ti

Hi =
1
S

S∑
s=1

His , where His =
C∑

c=1

B∑
b=1

Hiscb .

S is is the number of feature-streams and His is calculated
from the entropies Hiscb, that represent the entropy of each
class (c ∈ C) and bin (b ∈ B) given the stream s at time ti.
We introduced the bins as discrete aggregation of the values
of each feature stream s. To simplify the presentations we
will use 2 bins for all calculations. Hiscb is generated by
calculating the entropy of the two sliding windows

Hiscb =
−wiscb︸ ︷︷ ︸

weight

[�iscbold
log2(�iscbold

)︸ ︷︷ ︸
Hiscb[“old window”]

+ �iscbnew log2(�iscbnew )︸ ︷︷ ︸
Hiscb[“new window”]

]
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where �iscbold
is the probability that an instance occurs in

the old window at time ti, belonging to class c, with the fea-
ture domain of stream s in bin b. Obviously, �iscbnew is cal-
culated analogously. The weightwiscb can depend on i, s, c,

and b. The border condition
∑S

s=1

∑C
c=1

∑B
b=1 wiscb

!= 1,
∀imust be fulfilled in order to keep the entropy in the range
[0,1]. To simplify the calculations we will choosewiscb = 1
for ∀i, s, c, b and keep both sliding windows of all streams
at the same length. For a more detailed explanation see [6].

3.2 Algorithm Control Strategy using Entropy
Measure

This subsection focuses on developing a simple, coarse
algorithm that automatically adapts to concept shifts based
on the entropy measure. This allows us to benchmark our
algorithm to other approaches in terms of prediction power.
Thus, we can draw conclusions from these comparisons for
our entropy-based measure as concept shift indicator. Our
approach is an instance selection style algorithm that adapts
the window size whenever the entropy measure detects a
shift. The window size control strategy is based on the very
simple rule depicted in Figure 1. Let us assume that we
start before a shift and the entropy measure value is at (or
near) 1 and the window of the algorithm is of some given
size ξ. When a shift occurs the entropy measure reacts. If
it intersects an arbitrary chosen threshold τ we collapse the
window size ξ of the algorithm to a minimal size and let
it grow again by the newly arriving instances to an upper
threshold, resulting in a linear recovery of the window size
after the drift. Thus, every time the entropy intersects with
the threshold (with a negative slope) the algorithm “forgets”
its current model and starts to relearn on the most recent
instances. In the remainder of this study we have chosen

Figure 1. Illustration of the algorithm control
strategy.

a fixed threshold τ = 0.95 and set the lower bound win-
dow size ξlower bound to 20 and the upper bound window size
ξupper bound to 1000 instances (the only reason to introduce an
upper bound was to allow a fair comparison with the bench-

mark algorithms presented in the next section, which have
a maximum window size of 1000).

4 Experimental setup

For a comprehensive analysis of concept drift algorithms
the first requirement to a benchmark data set is that it needs
to differentiate between virtual and real drifts. Furthermore,
we need to ensure that the data sets don’t contain any arti-
facts from their generation such as asymmetrical features or
other hidden dependencies. As we did not find any bench-
mark data set in the literature conforming to these require-
ments we adapted the method of [7] to generate our own
synthetic data set. Our data set domain consists of a sphere
containing all instances and a plane intersecting this sphere
through its origin. The orientation Θ of the plane is de-
fined by a three dimensional vector �n standing perpendicu-
lar of the plane’s surface. Instances above the plane belong
to class A and instances below the plane belong to class B.
Hence, this mechanism defines a two class problem. We
obtain the overall data set by combining three random and
independent data streams with a fourth data stream gener-
ated by the rule above. So, we created a “real drift” data
set by rotating the plane, a “virtual drift” data set by leav-
ing the plane untouched and altering the class distribution
ψA, and a “mixed” data set by overlaying the two data sets.
To be able to assess all algorithms under noisy conditions
we added 0%, 1%, 2%, 5%, 10%, 20%, and 50% of noise
to all of the data sets by switching the lables at random. For
a more detailed explanation see [6].

As a performance measure we chose both accuracy and
the area under the ROC-curve. We used the accuracy as
quality measure for classifier predictions because all the re-
lated literature makes use of it. Throughout this evalua-
tion we have chosen to use a batch version of the Naı̈ve
Bayes algorithm as it is known for its robustness, does not
require much computational power. As using a sliding win-
dow technique, we induced the model not on all instances
available at time ti but on a window w of size ξ. Thus, the
window used was wξ,i = [di−ξ, di−ξ+1, ..., di]. In section
3.2 we presented a general rule to adapt an algorithm based
on the outcome of the entropy measure.

To compare our solution against two accepted standards
we calculated a representative set of benchmarks on the
three data sets presented above. First, a so-called perfect
benchmark, which assumes an oracle-given ideal window-
size ξ for any point in time, and second, a selection of en-
semble classifiers (based on 9 members), which the liter-
ature [3] so far showed to have the highest accuracy and
robustness against noise. We limit the training set of all
classifiers to a maximal window size of 1000 to keep the
range in the order of magnitude of a single concept length
as used in the synthetic data sets. For a more details see [6].
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Figure 2. Overview on the real concept shift parameter (orientation angle Θ of �n).
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Figure 3. Overview on the virtual concept shift parameter (class distribution ψA).
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Figure 4. The results for the entropy based and all benchmark algorithm for the real, virtual, and the
real and virtual mixed concept drift data sets.
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Figure 5. The upper line represents the entropy based measure applied on the real-world dataset.
The lower line represents the sequence of different context situations.
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5 Experimental Results

Figures 2 and 3 provide an overview of the results and
an intuitive understanding of the entropy measure. These
two figures are composed the same way. The curve (A)
at the top represents the concept drift parameter. For real
shifts this is the �n vector orientation angle Θ. For virtual
shifts the concept is represented by the class distribution
ψA. We do not present the curves on the mixed data set
because their behavior is consistent with curves presented
on the real and the virtual shifts and thus, these curves do
not provide any new information. Curve (B) is the derived
entropy H . The curves (C) and (D) represent the perfect
benchmark. (C) shows the highest reachable accuracy by a
window based forgetting Naı̈ve Bayes algorithm. (D) shows
the corresponding window size in order to reach that pre-
diction above. The two last curves (E) and (F) represent
the accuracy and the window size of our entropy measure
based algorithm. All curves are calculated under noise-
absent conditions. The entropy based measure (B) reflects
the concepts shifts (A) on both data sets and each amplitude
corresponds to the shift intensity. The accuracy of the per-
fect benchmark (C) is a little bit biased by the prior class
distribution as it follows the top line (A) in Figure 3. The
window size behavior of the two algorithms ((D) and (F))
is very similar on real shift data except on the very small
shifts that are overlooked by the entropy based algorithm.
The perfect benchmark behavior on the virtual data is totally
different. It shows vehement window size variations - even
in non-drifting sequences. The entropy based approach is,
again, synchronous to the virtual shift - except for the very
small ones. Figure 4 shows the prediction quality on the
three data sets against increasing noise levels. All three
graphs show that our algorithm (dashed line) is as noise re-
sistant as the benchmarks. The graphs shows also that our
algorithm outperforms the ensemble classifiers - except for
the virtual shift dataset. The fact that our algorithm cannot
keep up with two of the ensemble algorithms for this setting
indicates that our simple coarse approach is insufficient for
this situation, although the entropy indicates almost every
virtual concept shift (Fig. 3). The graphs on the right show
the results on the mixed data set. These results are sound re-
garding the results of the real and the virtual shift results. Fi-
nally, we conducted experiments concerning computational
complexity. We compared the ensemble classifiers and the
entropy measure based algorithm. We first measured the
elapsed time for all three committee classifiers for both of
the quality measures. The elapsed time was about the same
such we decided to report it as mean and standard deviation.
The computation2 of 10000 tuples taken from the synthetic
data set required 2031.6±15s. The entropy based algorithm
required 148.6s, which is 13.7 times faster than the commit-

2Using Matlab on a 3 GHz Pentium 4 machine with 1 GByte RAM.

tee. The entropy calculation without following Naı̈ve Bayes
model building requires only 1.1± 0.1s. This indicates that
the performance difference originates from the number and
size of the used Naı̈ve Bayes models. This emphasizes the
computational advantage of our approach as expected.

6 Discussion of the Experiment

It is remarkable that the simple coarse algorithm based
on the entropy measure outperforms the ensemble bench-
mark algorithm on real concept shifts. This confirms that
the entropy measure is a very good indicator for detecting
and controlling an algorithm adapting to real concept shifts.
Also, our algorithm is one order of magnitude faster than
the ensemble approach, because our approach calculates the
Naı̈ve Bayes algorithm only once, whereas the ensemble re-
quires a Naı̈ve Bayes calculation for each of its members.
Hence, our algorithm exhibits a greater predictive power
while requiring less computational resources. Note that the
calculation of the entropy measure only accounted for less
than 1% of the computational requirement of our algorithm.
Furthermore, the entropy measure based algorithm showed
the nearly the same robustness towards noise as the per-
fect benchmark and the committee classifiers. To reach this
goal we invested the domain knowledge that the structure
of the examined drifts is abrupt; i.e., that the domain ex-
hibited concept shifts rather than concept drifts. But this
assumptions holds for our initial real-world problem as we
will show in the next section.

7 Application to a Real-World Problem:
Context Switches in Sensor Data

As mentioned in the introduction section, the original
motivation for the entropy based measure was the monitor-
ing of sensor data streams for context switches. To demon-
strate that functionality we use the exact same data set as
presented in a prior study [1]. The data set consists of au-
dio and accelerometer data recorded over a time of 15381
seconds. The wearable data acquisition setup included a
microphone and three three-dimensional accelerometers at-
tached on the subject’s shoulder, wrist, and leg. To illus-
trate the applicability of the measure we focus on the audio
stream and one single accelerometer (leg, would correspond
to a mobile device’s accelerometer carried in a pocket). The
data was preprocessed in a very simple and fast way as it
could be performed e.g. on a smart phone resulting in one
feature vector for each second. The audio signal was de-
composed into 10 features3. The accelerometer data was

3Spectral center of gravity, temporal fluctuations of spectral center of
gravity, tonality, mean amplitude onsets, common onsets across frequency
bands, histogram width, variance, mean level fluctuations strength, zero
crossing rate, and total power.
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merged in one single feature: the absolute value of the am-
plitude. To calculate the entropy based measure we applied
the exact same parameters as used in the evaluation before.
As input stream we have chosen the audio features and as
target class we picked the accelerometer feature which has
been discretized to represent a two class problem (large and
small acceleration). We had 2 bins for each input stream,
and chose a window size of 100 instances (=100 seconds)4.
The upper line in Figure 5 shows the entropyH calculation
on the sensor data and the lower line illustrates the subject’s
actual context sequence (scenario). The scenario consists
of 6 context situations: (A) walking, (B) streetcar, (C) of-
fice work, (D) lecture, (E) cafeteria, and (F) meeting. The
large peaks in the entropy measure look synchronous to the
concept shifts. Based on this observation we can construct
an algorithm that indicates a context switch every time the
entropy crosses a given threshold (analogously to the algo-
rithm introduced to adapt to the shifts, see Section 3.2). If
we arbitrarily choose the threshold to be, e.g., 0.7 the algo-
rithm would indicate 17 of total 18 context switches and six
times cause a “false alarm”. The one context switch at 8462
seconds is not detected because its signal overlaps with the
signal of the context switch just before at 8391 seconds.
Raising the threshold even further will result in increasingly
fine-grained indications of context switches – not only con-
cept switches between “walking” and other context situa-
tions. Additionally, the intensity of the peaks indicates the
magnitude of the context switch. Hence, one can derive
some degree of similarity between the context situations,
which might be used to control the granularity of the seg-
mentation.

8 Limitations, Future Work, and Conclusion

This projects focused on concept shifts. We are, there-
fore, planning to investigate more sophisticated control
strategies for gradual concept drifts in future work. The
chosen window size of our algorithm was experimentally
chosen to cope with the signal-to-noise ratio. Alternatively,
one could try to find boundary conditions such as lower and
upper bounds for the window size as presented in [2] and
[4]. Some algorithms recognize recurring concepts and ex-
ploit this information [8]. While this has not been the focus
of this project, any algorithm based on our entropy measure
could be enhanced by comparing stored models with new
data as soon as the entropy indicates the appearance of a
new concept. In this paper we illustrated our technique on a
2-class problem, but it is generalizable to n-class problems,
since the entropy formula and the classifiers generalize ac-
cordingly. Last but not least, we provided a real-world ex-

4We are well aware that there is a huge potential of improving our re-
sults by fine tuning the parameter settings, but we only want to show that
satisfying results can be achieved - even with the most simple settings.

ample to show the usefulness of this approach. In future we
would like to investigate the generalizability both to other
subjects and different applications. Also the choice of the
suitable parameters could be optimized.

In this paper we set out to find a measure for detect-
ing and measuring concept shifts as an analogon for con-
text switches. Our experimental findings show that the for-
mulation of entropy on data streams presented in section 3
is indeed capable to detect and measure concept shifts. A
simple and coarse algorithm with an entropy based instance
selection strategy outperformed ensemble based algorithms
on real concept shift data sets. Given our algorithms robust-
ness towards noise, its sensitivity towards concept shifts,
its computational efficiency, and predictive power on real
concept shift data sets it addresses two central trade offs of
current data streams mining approaches: predictive power
versus computational complexity and noise versus sensitiv-
ity. As such we believe that our entropy based measure is
a very promising basis to gain further insight into the prob-
lem of concept shifts, ultimately resulting in better induc-
tion algorithms for this increasingly important application
domain.

We would like to thank Iwan Stierli and Martin Con-
stam for their substantial support in the initial stage of this
project. We also like to thank Haym Hirsh and Patrice Eg-
ger.
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