EECS 4425: Introductory Computational Bioinformatics

Suprakash Datta Email: datta [at] eecs.yorku.ca Course page: <u>www.cse.yorku.ca/course/4425</u> Office: LAS 3043

These slides have been taken from the book website

BLAST (Basic Local Alignment Search Tool) allows rapid sequence comparison of a query sequence against a database.

The BLAST algorithm is <u>fast</u>, <u>accurate</u>, and <u>accessible</u> both via the web and the command line.

Why use BLAST?

BLAST searching is fundamental to understanding the relatedness of any favorite query sequence to other known proteins or DNA sequences.

Applications include

- identifying orthologs and paralogs
- discovering new genes or proteins
- discovering variants of genes or proteins
- investigating expressed sequence tags (ESTs)
- exploring protein structure and function

BLASTP search at NCBI: overview of web-based search

Step I: Choose your sequence

Sequence can be input in FASTA format or as accession number

BLAST step 2: choose program

B&FG 3e Fig. 4-2 Page 124

Step 2. Choose the BLAST program

Step 3: choose a database to search (protein databases)

TABLE 4.1 Protein sequence databases that can be searched by BLAST searching at NCBI. PDB, Protein Data Bank. # indicates approximate number of sequences in database. Adapted from BLAST, NCBI,
http://blast.ncbi.nlm.nih.gov/.

Database	Title	# sequences
nr	All nonredundant GenBank CDS translations + PDB + SwissProt + PIR + PRF excluding environmental samples from WGS projects	65 million
Reference proteins	NCBI protein reference sequences	50 million
UniProtKB/SwissProt	Nonredundant UniProtKB/SwissProt sequences	450,000
Patented protein sequences	Protein sequences derived from the Patent division of GenBank	1.3 million
Protein Data Bank	PDB protein database	77,000
Metagenomic proteins	Proteins from WGS metagenomic projects (env_nr)	6.5 million
Transcriptome	Transcriptome Shotgun Assembly (TSA) sequences	770,000

B&FG 3e Table 4-1 Page 126

Step 3: choose a database to search (nucleotide)

Database	Title	# sequences
Human Genomic + Transcript	Homo sapiens NCBI Annotation Release 104 RNAs; Homo sapiens all assemblies	55,000
Mouse Genomic + Transcript	Mus musculus NCBI Annotation RNAs; Mus musculus all assemblies	N/A
nr/nt	All GenBank+EMBL+DDBJ+PDB+RefSeq sequences, but excludes EST, STS, GSS, WGS, TSA, patent sequences as well as phase 0, 1, and 2 HTGS sequences	25 million
refseq_rna	NCBI transcript reference sequences	3.5 million
refseq_genomic	NCBI genomic reference sequences	2.7 million
NCBI Genomes	NCBI chromosome sequences	28,000
Expressed sequence tags (EST)	Database of GenBank+EMBL+DDBJ sequences from EST Divisions	75 million
Genomic survey sequences (gss)	Genome survey sequence, includes single-pass genomic data, exon-trapped sequences, and Alu PCR sequences	36 million
High-throughput genomic sequences (HTGS)	Unfinished high-throughput genomic sequences; sequences: phases 0,1 and 2	153,000
Patent sequences	Nucleotide sequences derived from the Patent division of GenBank	21 million
Protein Data Bank	PDB nucleotide database	8000
alu	Human Alu repeat elements	325
Sequence tagged sites (STS)	Database of GenBank+EMBL+DDBJ sequences from STS Divisions	1.3 million
Whole-genome shotgun (wgs)	Whole-genome-shotgun contigs	116 million
Transcriptome Shotgun Assembly (TSA)	Transcriptome shotgun assembly (TSA) sequences	15 million
16S ribosomal RNA sequences (Bacteria and Archaea)	16S ribosomal RNA sequences (bacteria and archaea)	7500

B&FG 3e Table 4-2 Page 127

Step 4: optional parameters

You can...

- choose the organism to search
- turn filtering on/off
- change the substitution matrix
- change the expect (e) value
- change the word size
- change the output format

Example: BLASTP human insulin (NP_000198) against a *C. elegans* RefSeq database. Varying some parameters (filtering, compositional adjustments) can greatly affect the alignment itself.

Step 4a: choose optional BLASTP search parameters

Step 4a: compositional adjustment influences score,

expect value search results (a) Default: conditional compositional score matrix adjustment

$$expect = 0.05$$

Default: conditional compositional score matrix adjustment

Insulin-like peptide 3 [Drosophila melanogaster] Sequence ID: refINP 648360.2 Length: 120 Number of Matches: 1

Range 1: 32 to 114 GenPept Graphics

Score		Expect	Method			Identities	Positives	Gaps	
31.6 bi	ts(70)	0.050	Composition	al matrix a	djust.	21/88(24%)	40/88(45%)	12/88(1	13%)
Query	29	HLCGSHI	VEALVLVCGE	RGFFYTPKT	RREAEI	LQVGQVELGG	GPGAGSLQPLAL	EGSLQ-	87
Sbjct	32	LCG I KLCGRKI	, E L +C .PETLSKLCV	+ + T YGFNAMT	+R + KRTLDF	+ Q++ G VNFNQIDG	L+ L FEDRSLLERLLS	+ S+Q SDSSVQM	86
Query	88	F	KRGIVEQCCTS:	ICSLYQLEN	YC 10	9			
Sbjct	87	LKTRRLF	RDGVFDECCLKS	SCIMDEVLR	YC 11	.4			

Positives

Gaps

87

(b) No adjustment (by default, filter low complexity regions) Insulin-like peptide 3 [Drosophila melanogaster] Sequence ID: refINP 648360.2 Length: 120 Number of Matches: 1

Expect

Range 1: 33 to 114 GenPept Graphics

no adjustment

33.5 bits(75) 0.009 21/87(24%) 40/87(45%) 12/87(13%) Query 30 LCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQ--LCG L E L +C + + T+R + + Q++ G L+ L + S+Q LCGRKLPETLSKLCV---YGFNAMTKRTLDPVNFNQID--GFEDRSLLERLLSDSSVQML 87 Sbjct 33 Query 88 -KRGIVEQCCTSICSLYQLENYC 109 + G+ ++CC C++ ++ YC Sbjct 88 KTRRLRDGVFDECCLKSCTMDEVLRYC 114

Identities

(c) Composition-based statistics

Score

Insulin-like peptide 3 [Drosophila melanogaster]

Sequence ID: refINP 648360.2 Length: 120 Number of Matches: 1

Range 1: 33 to 114 GenPept Graphics

-	Score		Expect	Method	Identities	Positives	Gaps	
	30.4 bi	ts(67)	1e-04	Composition-based stat	s. 21/87(24%)	40/87(45%)	12/87(13	3%)
	Query	30	LCGSHLV	FALVINCGERGEEVTREEF	NEDLOVGOVELGGG	PGIGSLOPLIL	GSLO	87
	Aucr l	00	LCG L	E L + C + + T + R	+ + Q++ G	L+ L -	+ S+Q	0.
	Sbjct	33	LCGRKLP	ETLSKLCVYGFNAMTKR7	LDPVNFNQIDGF	EDRSLLERLLSI	SSVQML	87
	Query	88	KR +	GIVEQCCTSICSLYQLENYC G+ ++CC C++ ++ YC	109			
	Sbjct	88	KTRRLRD	GVFDECCLKSCTMDEVLRYC	114			

expect = 1e-04

composition-based statistics

B&FG 3e Fig. 4-5 Page 129

Step 4b: formatting options

The top of the BLAST output summarizes the query, database, and BLAST algorithm.

Click to access a summary of the search parameters or a taxonomic report.

B&FG 3e Fig. 4-6 Page 132

Step 4b: formatting options (you can view search parameters)

Search	Parameters
Program	blastp
Word size	3
Expect value	¹⁰ Expect value
Hitlist size	100
Gapcosts	11,1
Matrix	BLOSUM62 - BLOSUM62 matrix
Filter string	F
Genetic Code	1
Window Size	40
Threshold	11 - I hreshold value I
Composition-based stats	2
D	atabase
Posted date	Jun 12, 2013 10:46 AM
Number of letters	6,910,040,539 - Size of database
Number of sequences	19,996,853

txid10090 [ORGN]

Karlin-Altschul statistics									
Lambda	0.320339	0.267							
К	0.136843	0.041							
Н	0.422367	0.14							
Alpha	0.7916	1.9							
Alpha_v	4.96466	42.6028							
Sigma		43.6362							

B&FG 3e Fig. 4-7 Page 133 Entrez query

Step 4b: formatting options

B&FG 3e Fig. 4-8 Page 134 Graphic summary of the results shows the alignment scores (coded by color) and the length of the alignment (given by the length of the horizontal bars)

BLASTP output includes list of matches; links to the NCBI protein entry; bit score and E value; and download options

Sequences producing significant alignments:

Select: All None Selected:2

AT	Alignments Download ~ GenPept Graphics Distance tree of results Multiple align	ment					0
	Description	Max score	Total score	Query cover	E value	Max ident	Accession
•	PREDICTED: cytoglobin-2-like isoform 1 [Bombus terrestris] >ref[XP_003396833.1] PREDIC	59.7	59.7	91%	1e-10	29%	XP 003396832.1
•	PREDICTED: cytoglobin-2-like isoform 1 [Bombus impatiens] >ref[XP_003494220.1] PREDI	58.5	58.5	97%	3e-10	28%	XP 003494219.1
	PREDICTED: globin-like [Megachile rotundata]	57.8	57.8	89%	6e-10	29%	XP 003707185.1
	PREDICTED: globin-like [Apis florea]	53.9	53.9	89%	1e-08	30%	XP 003690810.1
	globin 1 [Apis mellifera]	52.8	52.8	89%	4e-08	30%	NP 001071291.1
	PREDICTED: cytoglobin-2-like isoform 1 [Bombus terrestris] >ref[XP_003396831.1] PREDIC	45.1	45.1	89%	2e-05	26%	XP 003396830.1
	PREDICTED: neuroglobin-like, partial [Acyrthosiphon pisum]	42.4	42.4	80%	2e-04	23%	XP 001946608.2
	globin, putative [Ixodes scapularis]	42.7	42.7	90%	2e-04	25%	XP 002414906.1

B&FG 3e Fig. 4-9 Page 134

BLAST output can be formatted to display multiple alignment

COBALT Home	Recent Re	esults He	Constraint-based Multiple Alignment Tool	My NCBI Welcome pevsner,
hylogenetic	Tree Edit	and Resub	mit <u>Back to Blast Results</u> ⊳ <u>Download</u>	
Multipl	e Align	iment R	Results - gi 4504349 ref NP_000509.1 hemoglobin subun U57PC4Y5211 (8 seqs)	it Cobalt RI
escription	s 🗹 Sele	ct All Re-	align > <u>Alignment parameters</u>	
egend for link	s to other r	resources:	UniGene 🖪 GEO 🖸 Gene 🗧 Structure M Map Viewer	
	Accessio	on	Description	Links
✓ <u>XP</u>	003396832	.1	PREDICTED: cytoglobin-2-like isoform 1 [Bombus terrestris] >ref[XP_003396833.1] PREDICTED:	cytoglobin GM
✓ <u>XP</u>	003494219	.1	PREDICTED: cytoglobin-2-like isoform 1 [Bombus impatiens] >ref[XP_003494220.1] PREDICTED:	cytoglobir GM
✓ <u>XP</u>	003707185	.1	PREDICTED: globin-like [Megachile rotundata]	G
✓ XP	003690810	.1	PREDICTED: globin-like [Apis florea]	G
✓ NP	001071291	.1	globin 1 [Apis mellifera] >emb CAJ43389.1 globin 1 [Apis mellifera] >emb CAJ43388.1 globin 1 [/	Apis mellife 🛛 G M
✓ <u>XP</u>	003396830	.1	PREDICTED: cytoglobin-2-like isoform 1 [Bombus terrestris] >ref[XP_003396831.1] PREDICTED:	cytoglobin GM
✓ XP_	001946608	2	PREDICTED: neuroglobin-like, partial [Acyrthosiphon pisum]	GM
✓ XP	002414906	.1	globin, putative [lxodes scapularis] >gb EEC18571.1 globin, putative [lxodes scapularis]	G
lignments	Select	t All (Re-al	Ign Mouse over the sequence identifer for sequence title	
View Format:	Compact	∀ 9 (Conservation Setting: 2 Bits 🗸 🛞	
✓ XP_00	3396832	1 MGTFI	LRFFGFSSSDDNRIDEATGLTEKQKKLVQNTWAVIRKDEVASGIAVMTTFFKTYPEYQRYFSAFADVPFDELPANK 80	
	3494219	1 MGTFI	RFFGISSSDDNRIDEATGLTEKQKKLVQNTWAVIRKDEVASGIAVMTTFFKTYPEYQRYFSAFADVPFDELPANK 80	
XP_00	3707185	1 MDSFI	RLLGISS-DDNRIDQAIGLIEKQKKLVQNTWSIIRKDEVGAGVLVMCAFFKKYPSYVQYFEAFKDIPLDQLPDNK 79	
XP_00	0101103			
▼ <u>XP_00</u> ▼ <u>XP_00</u>	3690810	1 MGTFI	LRFLGISSSDDNRIDQATGLTERQKKLVQNTWAVVRKDEVASGIAVMTAFFKKYPEYQRYFTAFMDTPLNELPANK 80	
▼ <u>xp_00</u> ▼ <u>xp_00</u> ▼ <u>xp_00</u> ▼ <u>np_00</u>	3690810	1 MGIFI 1 MGIFI	LRFLGISSSDDNRIDQAIGLTERQKKLVQNIWAVVRKDEVASGIAVMIAFFKKYPEYQRYFTAFMDTPLNELPANK 80 .RFLGISSSDDNRIDQAIGLTERQKKLVQNIWAVVRKDEVASGIAVMIAFFKKYPEYQRYFTAFMDTPLNELPANK 80	
×P 00 ×P 00 ×P 00 ×P 00 ×P 00 ×P 00 ×P 00	3690810 1071291 3396830	1 MGTF1 1 MGTF1 1 MGSVI	LRFLGISSSDDNRIDQAIGLIERQKKLVQN IWAVVRKDEVASGIAVMIAFFKKYPEYQRYFTAFMDIPLNELPANK 80 LRFLGISSSDDNRIDQAIGLIERQKKLVQN IWAVVR KDEV ASGIAVMIAFFKKYPEYQRYFTAFMDIPLNELPANK 80 .IYF-LGNPDDDVVDPKLGLINKEKRIIRE IWGVLR ANSV KVGVDIMISYFKRFPQHRAFPPFKDIPADDLLDNK 79	
▼ XP_00 ▼ XP_00 ▼ XP_00 ▼ XP_00 ▼ XP_00 ▼ XP_00	3690810 1071291 3396830 1946608	1 MGTF1 1 MGTF1 1 MGSVI 1	LRFLGISSSDDNRIDQATGLTERQKKLVQNTWAVVRKDEVASGIAVMTAFFKKYPEYQRYFTAFMDTPLNELPANK 80 LRFLGISSSDDNRIDQATGLTERQKKLVQNTWAVVRKDEVASGIAVMTAFFKKYPEYQRYFTAFMDTPLNELPANK 80 .TYF-LGNPDDDVVDPKLGLTNKEKRIIRETWGVLRANSVKVGVDIMISYFKRFPQHHRAFPPFKDIPADDLLDNK 79 .TYF-LGNPDDDVVDPKLGLTNKEKRIIRETWGVLRANSVKVGVDIMISYFKRFPQHHRAFPPFKDIPADDLLDNK 79	

B&FG 3e Fig. 4-10 Page 135

Outline

Introduction

BLAST search steps

Step I: Specifying sequence of interest

Step 2: Selecting BLAST program

Step 3: Selecting a database

Step 4: Selecting search parameters and formatting

parameters

Stand-alone BLAST

BLAST algorithm uses local alignment search strategy BLAST algorithm parts: list, scan, extend BLAST algorithm: local alignment search statistics and E

value

Making sense of raw scores with bit scores BLAST algorithm: relation between E and p values

BLAST search strategies

General concepts; principles of BLAST searching How to evaluate the significance of results How to handle too many or too few results BLAST searching with multidomain protein: HIV-1 Pol

How a BLAST search works

"The central idea of the BLAST algorithm is to confine attention to segment pairs that contain a word pair of length w with a score of at least T."

Altschul et al. (1990)

How the original BLAST algorithm works: three phases

Phase I: compile a list of word pairs (w=3) above threshold T

Example: for a human RBP queryFSGTWYA... (query word is in green)

A list of words (w=3) is: FSG SGT GTW TWY WYA YSG TGT ATW SWY WFA FTG SVT GSW TWF WYS

• •

Phase 1: Setup: compile a list of words (w=3) above threshold T

- Query sequence: human beta globin NP_000509.1 (includes ...VTALWGKVNVD...). This sequence is read; low complexity or other filtering is applied; a "lookup" table is built.
- · Words derived from query sequence (HBB): VTA TAL ALW LWG WGK GKV KVN VNV NVD

Generate a list of words matching query		LWG	4+11+6=21	
(both above and below T). Consider THG		IWG	2+11+6=19	
in the query and the secree (derived from a		MWG	2+11+6=19	
In the query and the scores (derived from a		VWG	1+11+6=18	
BLOSOWB2 matrix) for various words.	examples of	FWG	0+11+6=17	
Concrete cimilar lists of words epopping	words >=	AWG	0+11+6=17	
the query (e.g. words for Words spanning	threshold 12	LWS	4+11+0=15	
the query (e.g. words for wow, owe, wer).		LWN	4+11+0=15	
		LWA	4+11+0=15	
threshold		LYG	4+ 2+6=12	
		LFG	4+ 1+6=11	
	examples of	FWS	0+11+0=11	
	words below	AWS	-1+11+0=10	
	threshold	CWS	-1+11+0=10	
		IWC	2+11-3=10	

Phase 2: scan the database for matches and extend

Phase 2: Scanning and extensions

- Select all the words above threshold T (LWG, IWG, MWG, VWG, FWG, AWG, LWS, LWN, LWA, LYG)
- · Scan the database for entries ("hits") that match the compiled list
- · Create a hash table index with the locations of all the hits for each word
- Perform gap free extensions
- Perform gapped extensions

```
LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTORFFESFGDLSTPDAVMGNPKV HBB
     L+P +K+ V A WGKV + E G EAL R+ + +P T+ +F F
                                                                D
                                                                    G+ +V
      LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF----DLSHGSAQV HBA
       extension
                              extension
              word pair from
            first phases of search
             "hits" alpha globin,
             triggers extension
B&FG 3e
Fig. 4-12
Page 139
```

Phase 3: Traceback to generate gapped alignment

Phase 3: Traceback

- Calculate locations of insertions, deletions, and matches (for alignments saved in Phase 2)
- Apply composition-based statistics (for BLASTP, TBLASTN)
- Generate gapped alignment

You can locally install BLAST and modify the threshold parameter.

The default value for BLASTP is 11.

To change it, enter "-f I6" or "-f 5" in the advanced options of BLAST+.

Effect of changing the threshold T: Lower T yields more database hits (black line) and extensions (red)

B&FG 3e Fig. 4-13 Page 140 For BLASTN, the word size is typically 7, 11, or 15 (EXACT match). Changing word size is like changing threshold of proteins. w=15 gives fewer matches and is faster than w=11 or w=7.

For megaBLAST (see below), the word size is 28 and can be adjusted to 64. What will this do? MegaBLAST is VERY fast for finding closely related DNA sequences!

How to interpret a BLAST search: expect value

It is important to assess the statistical significance of search results.

For global alignments, the statistics are poorly understood.

For local alignments (including BLAST search results), the statistics are well understood. The scores follow an extreme value distribution (EVD) rather than a normal distribution.

Normal distribution

Χ

Normal distribution (solid line) compared to extreme value distribution (dashed line): note EVD skewing to the right

B&FG 3e Fig. 4-14 Page 141 The expect value *E* is the number of alignments with scores greater than or equal to score *S* that are expected to occur by chance in a database search.

An *E* value is related to a probability value p.

The key equation describing an *E* value is:

 $E = Kmn e^{-\lambda S}$

$$E = Kmn e^{-\lambda S}$$

This equation is derived from a description of the extreme value distribution

S = the score

E = the expect value = the number of highscoring segment pairs (HSPs) expected to occur with a score of at least S

m, n = the length of two sequences

$$\lambda$$
, *K* = Karlin Altschul statistics

Some properties of the equation $E = Kmn e^{-\lambda S}$

- The value of E decreases exponentially with increasing S (higher S values correspond to better alignments). Very high scores correspond to very low E values.
- •The *E* value for aligning a pair of random sequences must be negative! Otherwise, long random alignments would acquire great scores
- Parameter K describes the search space (database).
- For E=I, one match with a similar score is expected to occur by chance. For a very much larger or smaller database, you would expect E to vary accordingly

From raw scores to bit scores

• There are two kinds of scores: raw scores (calculated from a substitution matrix) and bit scores (normalized scores)

• Bit scores are comparable between different searches because they are normalized to account for the use of different scoring matrices and different database sizes

S' = bit score =
$$(\lambda S - \ln K) / \ln 2$$

The *E* value corresponding to a given bit score is: $E = mn \ 2^{-S'}$

Bit scores allow you to compare results between different database searches, even using different scoring matrices.

B&FG 3e Page 143 The expect value *E* is the number of alignments with scores greater than or equal to score *S* that are expected to occur by chance in a database search. A *p* value is a different way of representing the significance of an alignment.

$$p = \mathbf{I} - \mathbf{e}^{-E}$$

B&FG 3e Page 143

How to interpret BLAST: E values and p values

E values are comparable to p values, and are designed to be more convenient to interpret.

(a) Graphical overview

DG--ICWOVROLYGDTGVLGRFLLOARDA----RGAVHVVVAETDYOSFAVLY 139

B&FG 3e Fig. 4-16 Page 147

Sbjct 93

"Recipricol" BLASTP search with CG8 as query includes RBP4 and other lipocalins

(a) Graphical overview

(b) List of alignments

Sequences producing significant alignments:

Select: All None Selected:0

AT	Alignments 🔚 Download 🖂 <u>GenPept</u> <u>Graphics</u> <u>Distance tree of results</u> <u>Multiple alignme</u>	nt					0
	Description	Max score	Total score	Query cover	E value	Max ident	Accession
	complement component C8 gamma chain precursor [Homo sapiens]	412	412	100%	3e-147	100%	NP 000597.2
	lipocalin-15 precursor [Homo sapiens]	69.7	69.7	76%	1e-14	34%	NP 976222.1
	protein AMBP preproprotein [Homo sapiens]	68.9	68.9	80%	1e-13	25%	<u>NP 001624.1</u>
	retinol-binding protein 4 precursor [Homo sapiens]	33.1	33.1	52%	0.12	25%	NP 006735.2
	tenascin-X isoform 1 precursor [Homo sapiens] - Not homologous	30.0	30.0	39%	1.5	31%	<u>NP 061978.6</u>
	neuroblastoma-amplified sequence [Homo sapiens] - Not homologous	29.6	29.6	20%	2.1	44%	NP 056993.2
	neutrophil gelatinase-associated lipocalin precursor [Homo sapiens]	28.9	28.9	75%	2.9	21%	NP 005555.2
	HBS1-like protein isoform 1 [Homo sapiens] - Not homologous	28.5	28.5	25%	5.4	33%	<u>NP 006611.1</u>

B&FG 3e Fig. 4-17 Page 149

This confirms that the finding of CG8 using RBP4 as a query was a true positive

Pairwise alignment of CG8 with non-homologous proteins

Download v GenPept Graphics

tenascin-X isoform 1 precursor [Homo sapiens]

Sequence ID: refINP 061978.6 Length: 4242 Number of Matches: 1

Range :	1: 3255 t	to 3330 g	GenPept Graphics			V Next Match	A Previous Ma
Score 30.0 bits(66)		Expect 1.5	Method Compositional r	natrix adjust.	Identities 25/81(31%)	Positives 36/81(44%)	Gaps 6/81(7%)
Query	73	TTLHVA	POGTAMAVSTFRKLD	-GICWQVRQLYGI	TGVLGRFLLQAP	RDARGAVHVVVAE	TD 131
Sbjct	3255	TPLPVE	PRLGELAVAAVISDS	VGLSWIVAQ	GPFDSFLVQY	RDAQGQPQAVPVS	GD 3309
Query	132	YQSFAVI	LYLERAGQLSVKLYA	152			
Sbjct	3310	LRAVAVS	SGLDPARKYKFLLFG	3330			

Download v GenPept Graphics

neuroblastoma-amplified sequence [Homo sapiens] Sequence ID: refINP 056993.2 Length: 2371 Number of Matches: 1

Range 1	l: 2323 t	o 2360 g	Vext Match	A Previous Mat		
Score 29.6 b	its(65)	Expect 2.1	Method Compositional matrix adjust.	Identities 18/41(44%)	Positives 23/41(56%)	Gaps 3/41(7%)
Query	49	GTWLLVA	VGSACRFLQEQGHRAEATTLHVAPQG	TAMAVSTE 89		
Sbjct	2323	GRWDAE	+G R L+E GH AEA +L +A +G LGRHLREAGHEAEAGSLLLAVRG	THQAFRTF 236	50	

- Query and subject are very different lengths
- E values are not significant
 Matches lack GXW motif
- Subjects are not annotated as lipocalins

(c) P

B&FG 3e Fig. 4-17 Page 149

BLAST searching a multidomain protein: HIV-1 pol

B&FG 3e Fig. 4-18 Page 151

BLAST searching a multidomain protein: HIV-1 pol

(a) Graphical overview

B&FG 3e Fig. 4-19 Page 153

BLAST searching a multidomain protein: HIV-1 pol

(b) List of alignments (query-anchored with dots for identities)

Query	1	MGARASVLSGGELDRWEKIRLRPGGKKKYKLKHIVWASRELERFAVNPGLLETSEGCRQI	60
NP 057849	1		60
P0C6F2	1		60
P03366	1		60
P03367	1		60
P04587	1		60
AAD03191	1	Q.R	60
P35963	1		60
P12497	1	KKQQ	60
P20875	1	R	60
AAD03200	1	S	60
P20892	1	I	60
Q73368	1	SS	60
BAB85751	1	QQ	60
AFB39387	1	Q	60
P03369	1		60
P05959	1	KK	60
AAG30116	1	I	60
AAD03217	1	IQQ	60
		Ŕ RKŔŔ ŔROŔ	

This output shows identical residues as a dot (.). Note that the column positions that contain an arginine (R) can sometimes also contain a lysine (K) or glutamine (Q) in a position-specific pattern. This is a preview of the concept of position-specific scoring matrices (Chapter 5).

B&FG 3e Fig. 4-19 Page 153

	Human immunodeficiency virus 1 [viruses] taxid 11676		
Taxonomy report	for a BLAST searching HIV-1 pol	1071	0
тахопотту тероге	ion a DErion Scarching inter por		0
	ref ND 780720 1 reverse transcriptage p51 gubunit [Muman	012	0.0
	ref NP 057850.1 Pr55(Gag) [Human immunodeficiency virus 1]	908	0.0
	ref NP 705928.1 integrase [Human immunodeficiency virus 1]	602	0.0
	ref YP_001856243.1 integrase [Human immunodeficiency viru	602	0.0
	ref NP_579880.1 capsid [Human immunodeficiency virus 1]	481	4e-156
	ref NP_579876.2 matrix [Human immunodeficiency virus 1]	271	7e-81
	ref YP 001856241.1 retropepsin [Human immunodeficiency virus i]	204	2e-57
	ref NP 579881.1 nucleocapsid [Human immunodeficiency viru	130	5e-32
	ref NP_787043.1 Gag-Pol Transframe peptide [Human immunod	119	4e-28
	Simian immunodeficiency virus [viruses] taxid 11723		
	ref NP_687035.1 Gag-Pol [Simian immunodeficiency virus]	1687	0.0
	ref NP_054369.1 gag protein [Simian immunodeficiency virus]	502	1e-159
	Human immunodeficiency virus 2 [viruses] taxid 11709		
	ref NP_663784.1 gag-pol fusion polyprotein [Human immunod	1675	0.0
	ref NP_056837.1 gag polyprotein [Human immunodeficiency v	523	3e-167
	Simian immunodeficiency virus SIV-mnd 2 [viruses] taxid 159122		
	ref NP_758887.1 pol protein [Simian immunodeficiency viru	1377	0.0
	ref NP_758886.1 gag protein [Simian immunodeficiency viru	486	2e-153
	Feline immunodeficiency virus [viruses] taxid 11673		
	ref NP_040973.1 pol polyprotein [Feline immunodeficiency	489	2e-148
Most of the matches	ref NP_040972.1 gag protein [Feline immunodeficiency virus]	158	8e-38
	Equine infectious anemia virus [viruses] taxid 11665		
are to viruses, but	ref NP_056902.1 pol polyprotein [Equine infectious anemia	424	1e-123
	ref NP_056901.1 gag protein [Equine infectious anemia virus]	154	2e-36
there are also	111		
matches to rabbit			
	Candida albicans SC5314 [ascomycetes] taxid 237561		
tungal, pig. and insect	ref XP_888860.1 hypothetical protein CaO19_6468 [Candida	90	2e-15
	ref XP_721310.1 hypothetical protein CaO19.6468 [Candida	86	1e-14
sequences.	Sus scrofa (wild boar,) [even-toed ungulates] taxid 9823		
l	ref XP_003482346.1 PREDICTED: hypothetical protein LOC100	90	2e-15
	Tribolium contanoum (rust red flour bootlo) [bootlog] toxid 7070		
	ref XP 001815322.1 PREDICTED: similar to orf [Tribolium c	89	5e-15
	ref XP_001808495.1 PREDICTED: similar to orf [Tribolium c	88	8e-15
	Condide dublication of a Constructional travid states		
	ref XP 002421195.1 retrovirus-related Pol polyprotein fro	88	6e-15
	Moniliophthora perniciosa FA553 [basidiomycetes] taxid 554373	100	-
	ret[XP_002387985.1] hypothetical protein MPER_13056 [Monil	88	7e-15

B&FG 3e Fig. 4-20 Page 154

BLASTP searching HIV-1 pol against bacterial proteins

B&FG 3e Fig. 4-21 Page 155

BLAST searching HIV-1 pol against human sequences

(b) TBLASTN search of HIV-1 pol against human expressed sequence tags

50-80

Question: are there human RNA transcripts corresponding to HIV-1 pol? Query: HIV-I Pol Program: TBLASTN Database: human ESTs Matches: many human genes are actively transcribed to generate transcripts homologous to HIV-1 pol.

"Find-a-gene project" to practice BLAST

B&FG 3e Fig. 4-23 Page 157

"Find-a-gene project" example: novel globin

(a) Result of TBLASTN against nematode ESTs using human beta globin as a query

Ac_EH1r_01A07_M13 Adult Anguillicola crassus Anguillicola crassus cDNA clone Ac_EH1r_01A07

Sequence ID: gb[JK511422.1] Length: 559 Number of Matches: 1

Range 1: 40	to 483 GenBank Graphics	Vext Match 🛕	Previous Mate	ch	
Score 149 bits(3)	Expect Method 75) 6e-44 Compositional matrix adjust.	Identities Positives . 69/148(47%) 97/148(65%)	Gaps 1/148(0%)	Frame +1	Ouery: NP 000509
Query 1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLV MV T E +A+ +LW K+NV+E+G +A+ RLL+	VYPWTQRFFESFGDLSTPDAVMGNPK V PWTQR F +FG+LST A+M N K	60		Program: TBLASTN
bjct 40	MVEWIDAEHIAILSLWKKINVEEIGPQAMRRLLI	VCPWTQRHFANFGNLSTAAAIMNNEK	219		Database: EST
Query 61	VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHC V HG V+G + ++D++K + LS +H	DKLHVDPENFRLLGNVLVCVLAHHFG +KLHVDP+NFRLL + +A FG	120		(nematodes)
bjct 220	VAKHGTTVMGGLDRAIQNMDDIKNAYRELSVMHS	EKLHVDPDNFRLLSEHITLCMAAKFG	399		Mataka a sul alakin
Query 121	-KEFTPPVQAAYQKVVAGVANALAHKYH 147 EFT VQ A+QK + V +AL +YH				I*latch: novel globir
Sbjct 400	PTEFTADVQEAWQKFLMAVTSALGRQYH 483				

(b) BLASTX result with a nematode EST showing its closest known protein match is in a vertebrate

RecName: Full=Hemoglobin anodic subunit beta; AltName: Full=Hemoglobin anodic beta chain sequence ID: <u>spiP80946.1|HBBA_ANGAN_Length</u>: 147_Number of Matches: 1

Range 1	l: 1 to 1	47 GenPept	Graphics	Ψ	Next Match 🔺 Pre	evious Match	1
Score 290 bi	ts(742)	Expect Me) 2e-97 Co	thod mpositional matrix a	Identities adjust. 136/147(93%)	Positives 141/147(95%)	Gaps 0/147(0%)	Frame b) +1
Query Sbjct	43	VEWTDAEHTAI VEWT+ E TAI VEWTEDERTAI	LSLWKKINVEEIGPQAM S W KIN+EEIGPQAM KSKWLKINIEEIGPQAM	RLLIVCPWTQRHFANFGNLS RLLIVCPWTQRHFANFGNLS RLLIVCPWTQRHFANFGNLS	TAAAIMNNEKV 2: TAAAIMNN+KV TAAAIMNNDKV 60		onfirmation
Query Sbjct	223 61	AKHGTTVMGGL AKHGTTVMGGL AKHGTTVMGGL	DRAIQNMDDIKNAYREL: DRAIQNMDDIKNAYREL: DRAIQNMDDIKNAYRQL:	SVMHSEKLHVDPDNFRLLSEH SVMHSEKLHVDPDNFRLL+EH SVMHSEKLHVDPDNFRLLAEH	ITLCMAAKFGP 4 ITLCMAAKFGP ITLCMAAKFGP 1:	$\frac{Q}{20}$ $\frac{Q}{Pr}$	ogram: BLASTX
Query Sbjct	403	TEFTADVQEAW TEFTADVQEAW TEFTADVQEAW	QKFLMAVTSALGRQYH OKFLMAVTSAL ROYH OKFLMAVTSALAROYH	483 147		Be	est match: a globin, bu
e						an	notated globin

B&FG 3e Fig. 4-24 Page 158

"Find-a-gene project"

- The find-a-gene project is meant to be a very focused, specific project to help you understand how to use various BLAST tools (e.g.TBLASTN, BLASTX, BLASTP) and various databases.
- You can start with (almost) any protein, from the organism of your choice, and discover a "novel" gene in another organism that is homologous but has never been annotated before as related to your query. Therefore you are discovering a new gene.
- You can take your new gene/protein, name it, then search it against databases to confirm it has not been described before.
- You can further perform multiple sequence alignment (Chapter 6), phylogeny (Chapter 7), and predict its protein structure (Chapter 13) and its function (Chapter 14).

Perspective

BLAST searching has emerged as an indispensable tool to analyze the relation of a DNA or protein sequence to millions or even trillions of sequences in public databases. All database search tools confront the issues of sensitivity (i.e., the ability to minimize false negative results), selectivity (i.e., the ability to minimize false positive results), and time. As the size of the public databases has grown exponentially in recent years, the BLAST tools have evolved to provide a rapid, reliable way to screen the databases. For protein searches we have focused on BLASTP. However, for most biologists performing even routine searches with a protein query, the DELTA-BLAST or HMMER programs described in Chapter 5 are strongly preferred. This is because of their more optimally constructed scoring matrices.

B&FG 3e Fig. 2-3 Page 22