

Bioinformatics and Functional Genomics

3rd edition (Wiley, 2015)

Jonathan Pevsner, Ph.D.

You may use (and modify) these slides for teaching purposes

Outline

Overview of protein structure

Principles of protein structure
Protein Data Bank
Protein structure prediction
Intrinsically disordered proteins
Protein structure and disease

Overview: protein structure

The three-dimensional structure of a protein determines its capacity to function. Christian Anfinsen and others denatured ribonuclease, observed rapid refolding, and demonstrated that the primary amino acid sequence determines its three-dimensional structure.

We can study protein structure to understand problems such as the consequence of disease-causing mutations; the properties of ligand-binding sites; and the functions of homologs.

Outline

Overview of protein structure

Principles of protein structure

Protein Data Bank

Protein structure prediction

Intrinsically disordered proteins

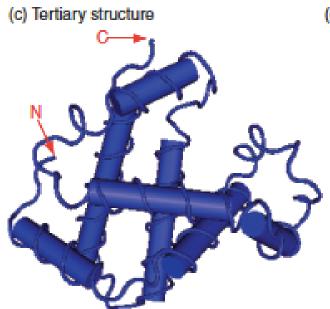
Protein structure and disease

Protein primary and secondary structure

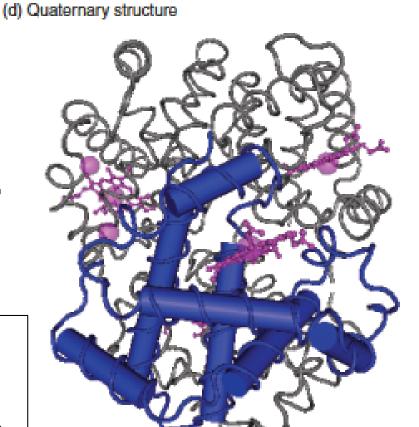
(a) Primary structure

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSD GLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

(b) Secondary structure

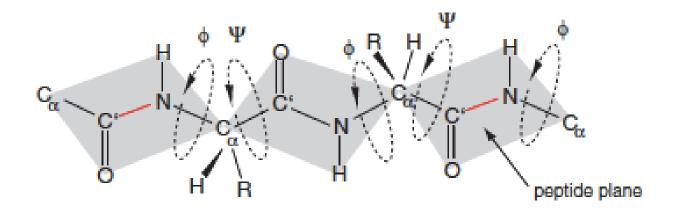


UNK_257900 ALAHKYH
DSC hhhhece
MLRC hhhhece
PHD hhhhhece
Sec.Cons. bhhhece


Results from three secondary structure programs are shown, with their consensus. h: alpha helix; c: random coil; e: extended strand

B&FG 3e Fig. 13.1 Page 592

Quarternary structure: the four subunits of hemoglobin are shown (with an α 2β2 composition and one beta globin chain high-lighted) as well as four noncovalently attached heme groups.

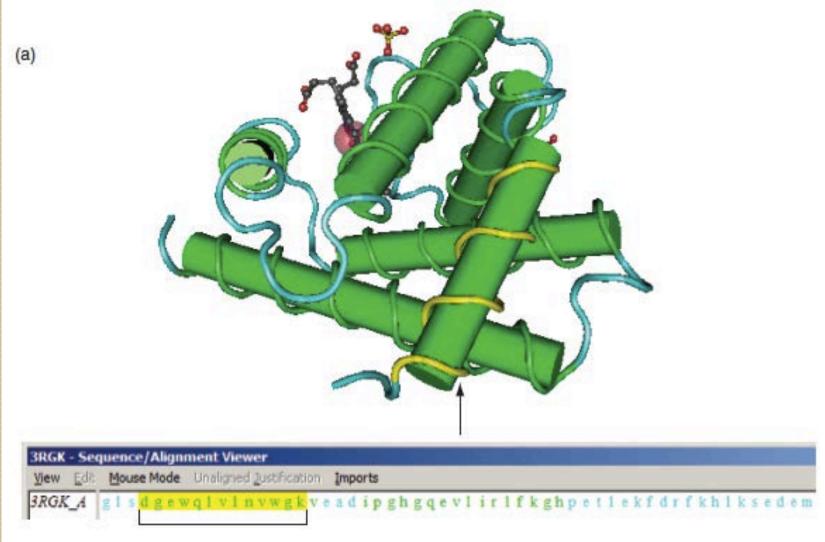


B&FG 3e Fig. 13.1 Page 592

The peptide bond; phi and psi angles

(a) peptide bond

(b) phi and psi angles of polypeptide

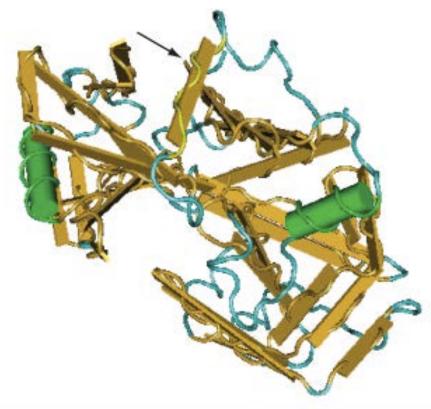

Protein secondary structure

Protein secondary structure is determined by the amino acid side chains.

Myoglobin is an example of a protein having many α -helices. These are formed by amino acid stretches 4-40 residues in length.

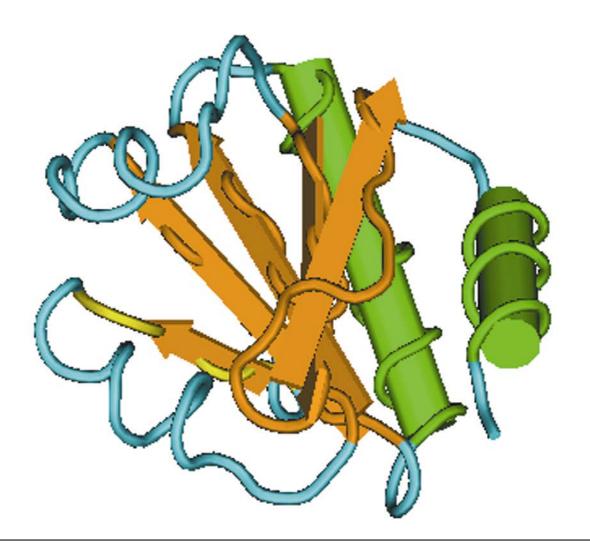
Thioredoxin from *E. coli* is an example of a protein with many β sheets, formed from β strands composed of 5-10 residues. They are arranged in parallel or antiparallel orientations.

Protein secondary structure: myoglobin (alpha helical)



B&FG 3e Fig. 13.3 Page 595

Myoglobin (John Kendrew, 1958) in Cn3D software (NCBI)



Click residues in the sequence viewer (highlighted in yellow) to see the corresponding residues (here a beta strand; arrow at top) highlighted in the structure image.

B&FG 3e Fig. 13.3 Page 595

Thioredoxin: structure having beta sheets (brown arrows) and alpha helices (green cylinders).

Secondary structure prediction

Chou and Fasman (1974) developed an algorithm based on the frequencies of amino acids found in a helices, b-sheets, and turns.

Proline: occurs at turns, but not in a helices.

GOR (Garnier, Osguthorpe, Robson): related algorithm

Modern algorithms: use multiple sequence alignments and achieve higher success rate (about 70-75%)

Secondary structure prediction: conformational preferences of the amino acids

Amino acid	Preference			Properties	
	Helix	Strand	Turn		
Glu	1.59	0.52	1.01	Helical preference;	
Ala	1.41	0.72	0.82	extended flexible side chain	
Leu	1.34	1.22	0.57		
Met	1.30	1.14	0.52		
Gln	1.27	0.98	0.84		
Lys	1.23	0.69	1.07		
Arg	1.21	0.84	0.90		
His	1.05	0.80	0.81		
Val	0.90	1.87	0.41	Strand preference; bulky side chains, beta-branched	
lle	1.09	1.67	0.47		
Tyr	0.74	1.45	0.76		
Cys	0.66	1.40	0.54		
Trp	1.02	1.35	0.65		
Phe	1.16	1.33	0.59		
Thr	0.76	1.17	0.90		
Gly	0.43	0.58	1.77	Turn preference;	
Asn	0.76	0.48	1.34	restricted conformations, side-main chain interaction	
Pro	0.34	0.31	1.32		
Ser	0.57	0.96	1.22		
Asp	0.99	0.39	1.24		

B&FG 3e Tab. 13.1 Page 597

Secondary structure prediction

Web servers include:

GOR4

Jpred

NNPREDICT

PHD

Predator

PredictProtein

PSIPRED

SAM-T99sec

DSSP code	Secondary structure assignment	
Н	Alpha helix	
В	Residue in isolated beta-bridge	
E	Extended strand, participates in beta ladder	
G	3-helix (3/10 helix)	
I	5 helix (pi helix)	
T	Hydrogen bonded turn	
S	Bend	
Blank or C	Loop or irregular element, incorrectly called "random coil" or "coil."	

DSSP is a dictionary of secondary structure, including a standardized code for secondary structure assignment.

B&FG 3e Tab. 13.3 Page 598

Tertiary protein structure: protein folding

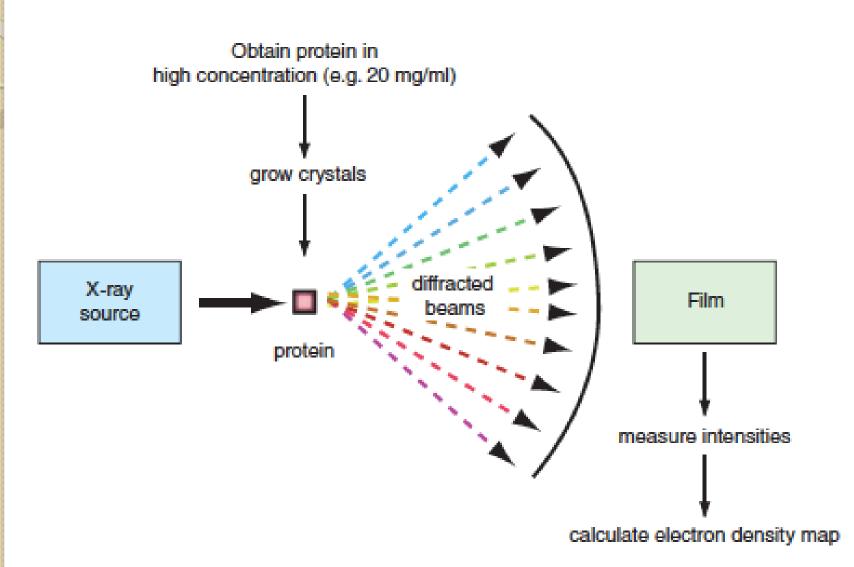
Main approaches:

[1] Experimental determination (X-ray crystallography, NMR)

[2] Prediction

- Comparative modeling (based on homology)
- ▶ Threading
- ► Ab initio (de novo) prediction

Experimental approaches to protein structure


[I] X-ray crystallography

- -- Used to determine 80% of structures
- -- Requires high protein concentration
- -- Requires crystals
- -- Able to trace amino acid side chains
- -- Earliest structure solved was myoglobin

[2] NMR

- -- Magnetic field applied to proteins in solution
- -- Largest structures: 350 amino acids (40 kD)
- -- Does not require crystallization

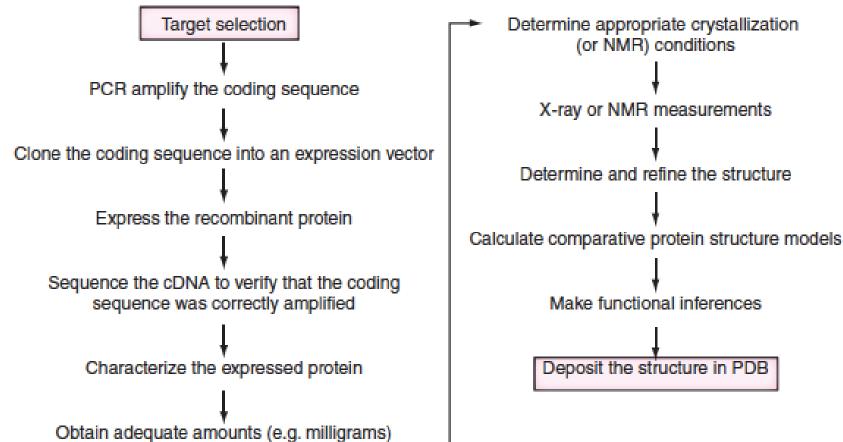
X-ray crystallography

B&FG 3e Box 13.1 Page 599

Steps in obtaining a protein structure

Target selection

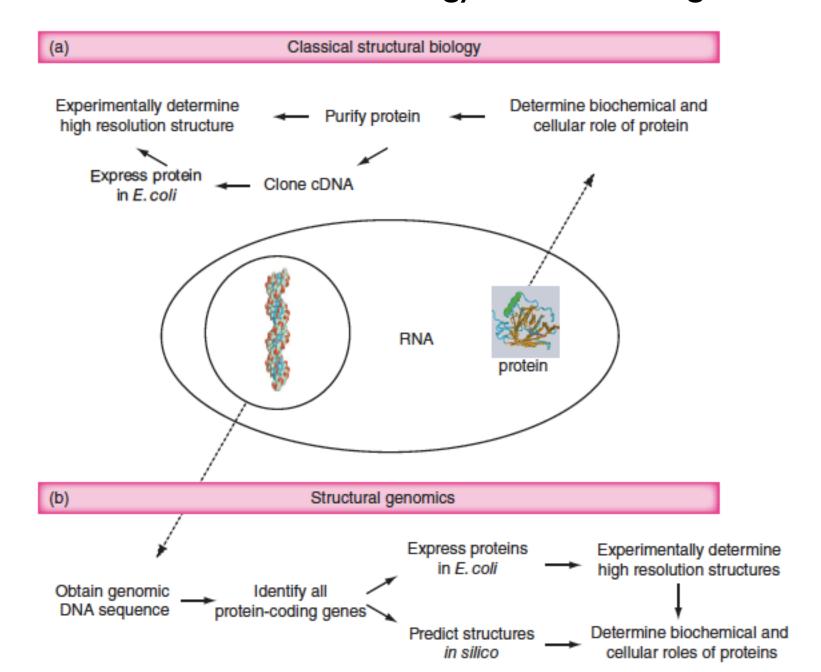
Obtain, characterize protein


Determine, refine, model the structure

Deposit in repository

Target selection for protein structure determination

and confirm the purity of the protein


Priorities for target selection for protein structures

Historically, small, soluble, abundant proteins were studied (e.g. hemoglobin, cytochromes c, insulin).

Modern criteria:

- Represent all branches of life
- Represent previously uncharacterized families
- Identify medically relevant targets
- Some are attempting to solve all structures within an individual organism (Methanococcus jannaschii, Mycobacterium tuberculosis)

From classical structural biology to structural genomics

B&FG 3e Fig. 13.6 Page 601

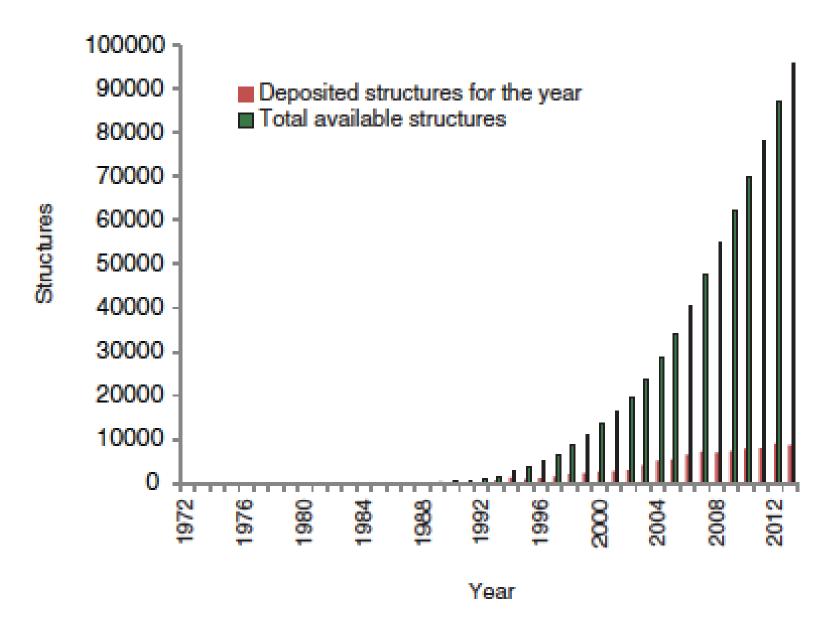
Outline

Overview of protein structure Principles of protein structure

Protein Data Bank

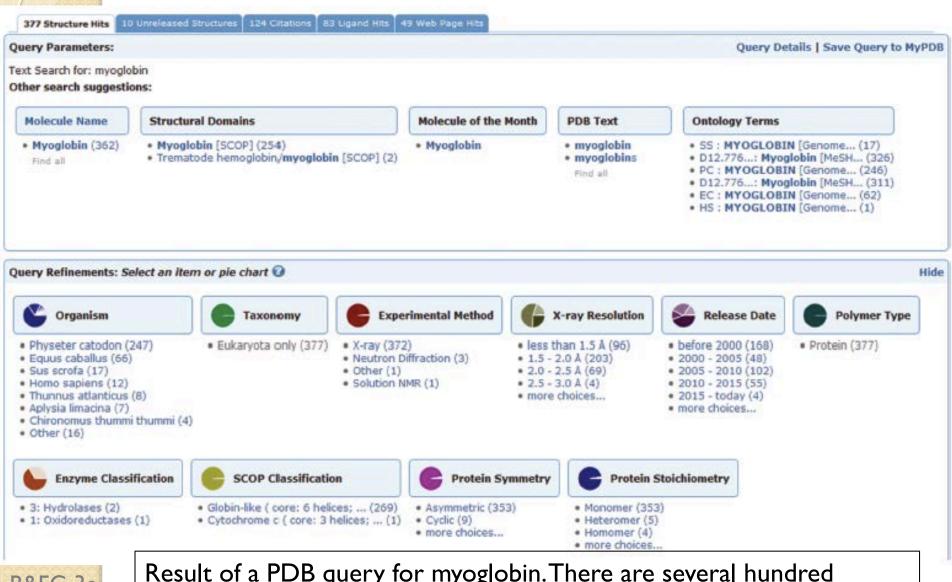
Protein structure prediction Intrinsically disordered proteins Protein structure and disease

The Protein Data Bank (PDB)


- PDB is the principal repository for protein structures
- Established in 1971
- Accessed at http://www.rcsb.org/pdb or simply http://www.pdb.org
- Currently contains >100,000 structure entities

Protein Data Bank (PDB) holdings

Experimental		Protein and nucleic			
technique	Proteins	Nucleic acids	acid complexes	Other	Total
X-ray diffraction	88,991	1,608	4,398	4	95,001
NMR	9,512	1,112	224	8	10,856
Electron microscopy	539	29	172	0	740
Hybrid	68	3	2	1	74
Other	164	4	6	13	187
Total	99,274	2,756	4,802	26	106,858



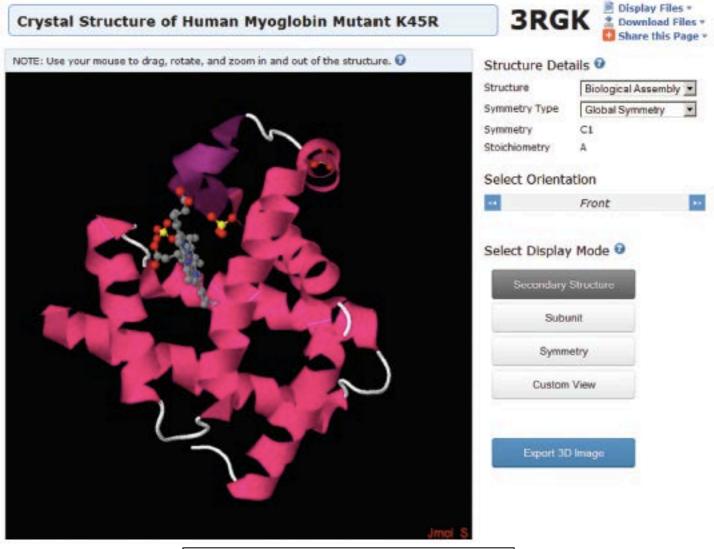
PDB: number of searchable structures per year

B&FG 3e Fig. 13.8 Page 604

PDB query for myoglobin

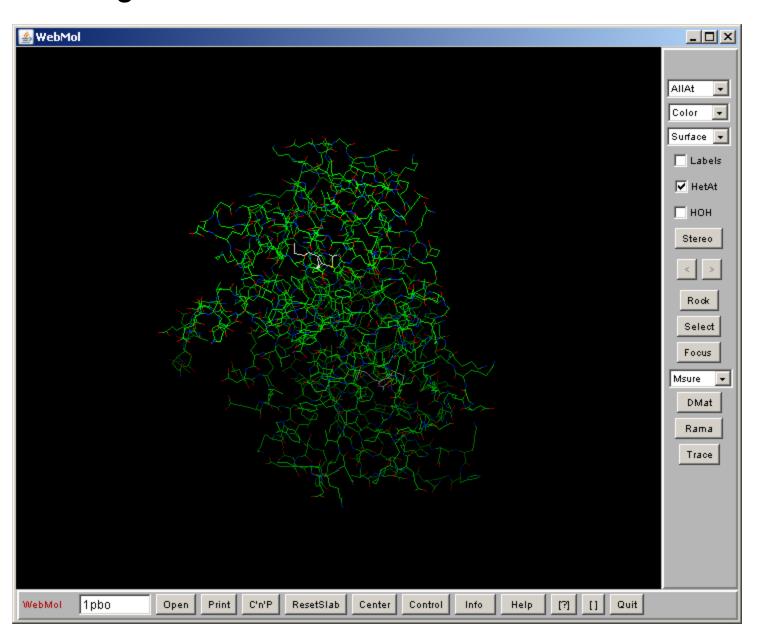
B&FG 3e Fig. 13.9 Page 605 Result of a PDB query for myoglobin. There are several hundred results organized into categories such as UniProt gene names, structural domains, and ontology terms.

Interactive visualization tools for PDB protein structures

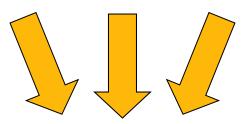

Tool	Comment	URL		
Cn3D	From NCBI	http://www.ncbi.nlm.nih.gov/Structure/		
		CN3D/cn3d.shtml		
JMol	Open-source Java viewer for chemical structures in 3D	http://jmol.sourceforge.net/		
Kiosk Viewer	Uses Java Web Start	http://pdb.org/		
Mage	Reads Kinemages	http://kinemage.biochem.duke.edu		
Protein Workshop Viewer	Uses Java Web Start	http://pdb.org/		
RasMol	Molecular graphics visualization tool	http://www.rasmol.org/		
RasTop	Molecular visualization software adapted from RasMol	http://www.geneinfinity.org/rastop/		
Simple Viewer	Uses Java Web Start	http://pdb.org/		
SwissPDB viewer	At ExPASy	http://spdbv.vital-it.ch		
VMD	Visual Molecular Dynamics; University of Illinois	http://www.ks.uiuc.edu/Research/vmd/		

B&FG 3e Tab. 13.5 Page 606

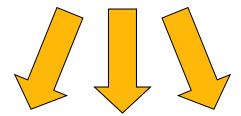
Visualization tools are available within PDB and elsewhere.


Visualizing myoglobin structure 3RGK: Jmol applet

B&FG 3e Fig. 13.11 Page 607


Jmol is available at PDB.

Viewing structures at PDB: WebMol



gateways to access PDB files

Swiss-Prot, NCBI, EMBL

Protein Data Bank

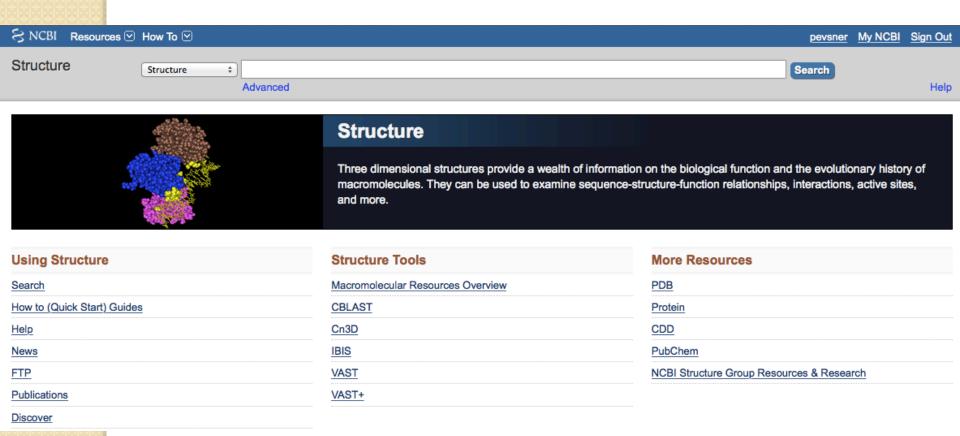
CATH, Dali, SCOP, FSSP

databases that interpret PDB files

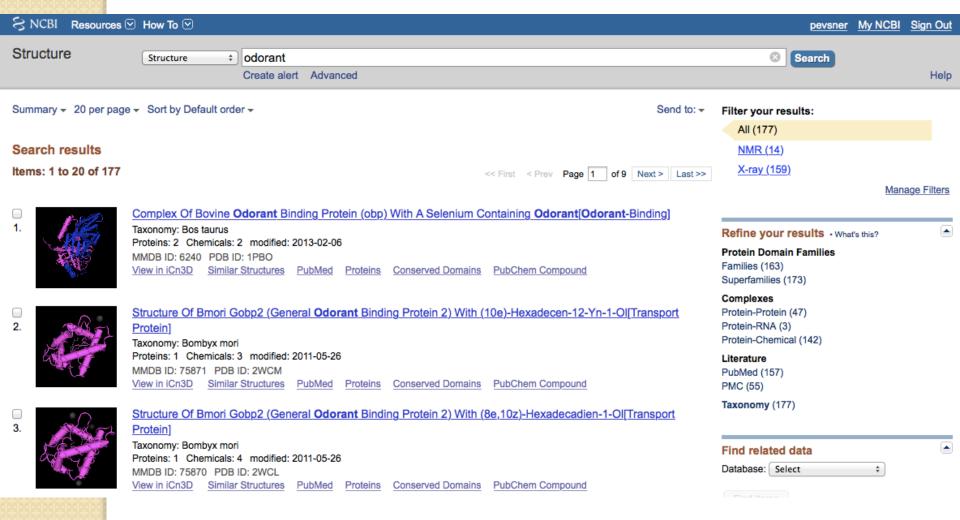
Access to PDB through NCBI

You can access PDB data at the NCBI several ways.

- Go to the Structure site, from the NCBI homepage
- Perform a DELTA BLAST (or BLASTP) search, restricting the output to the PDB database

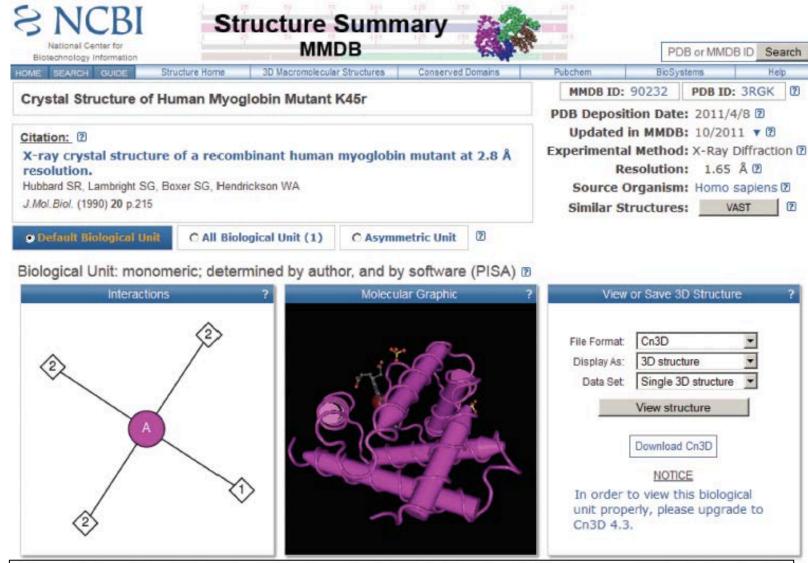

Access to PDB structures through NCBI

Molecular Modeling DataBase (MMDB)


Cn3D ("see in 3D" or three dimensions): structure visualization software

Vector Alignment Search Tool (VAST): view multiple structures

Access to PDB through NCBI: visit the Structure home page



Access to PDB through NCBI: query the Structure home page

Molecular Modeling Database (MMDB) at NCBI

B&FG 3e Fig. 13.12 Page 608

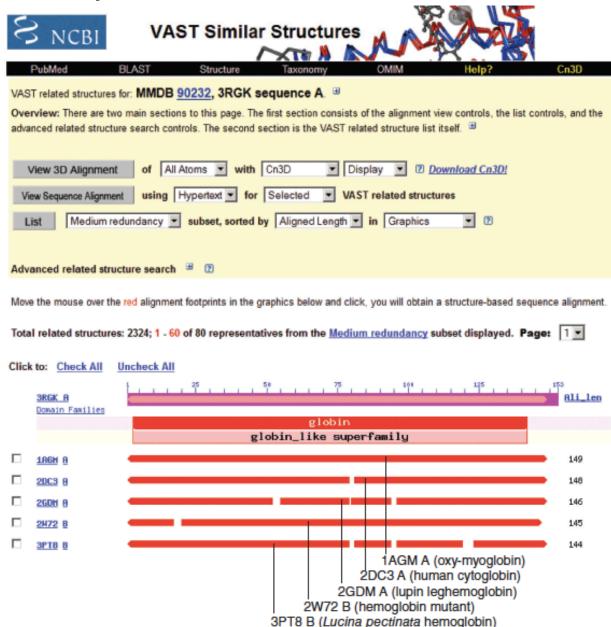
You can study PDB structures from NCBI. MMDB offers tools to analyze protein (and other) structures.

Cn3D: NCBI software for visualizing protein structures

Standard Protein BLAST

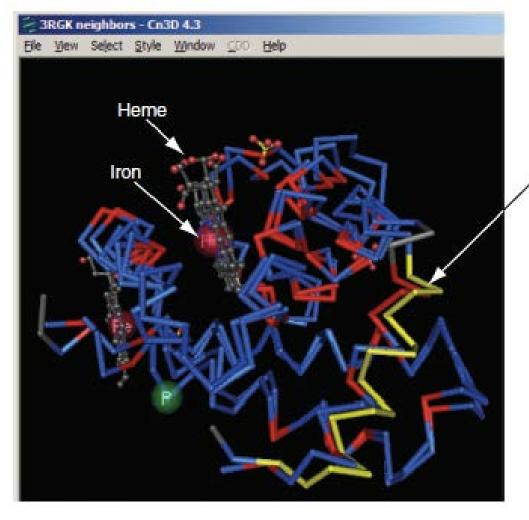
<u>blastn</u> b	olastp	blastx	tblastn	tblastx						
Ent	or Ou	any So	quence				BLASTF	programs searc	h protein o	databases using a protein query.
		•	•		FASTA sequ	uence(s)	0	Clear		Query subrange
	03270				•					From To
Job Ti			NP_00	3270:trop descriptiv	o file selected onin C, skelet re title for you	tal muscle	•			
Cho	nose S	Search	Set							
Choose Searc		Jouron	Non- ✓ Refer	ence prot	t protein seq	protein))	9		
Organ Options	ganism ional	Model Organisms (landmark) UniProtKB/Swiss-Prot(swissprot) Patented protein sequences(pat)					Exclude +			
Exclud			Meta	genomic _l	ank proteins(proteins(env_i Shotgun Asse	nr)	teins (tsa_nr)	iple sequence		
			D	o a C	ELTA I	BLAS [*]	T (or B	LASTP) s	search	n;

set the database to pdb (Protein Data Bank)


Access to structure data at NCBI:VAST

Vector Alignment Search Tool (VAST) offers a variety of data on protein structures, including

- -- PDB identifiers
- -- root-mean-square deviation (RMSD) values to describe structural similarities
- -- NRES: the number of equivalent pairs of alpha carbon atoms superimposed
- -- percent identity



Vector Alignment Search Tool (VAST) at NCBI: comparison of two or more structures

B&FG 3e Fig. 13.14 Page 610

VAST: NCBI tool to compare two structures

beta globin sequence highlighted in Sequence/ Alignment Viewer

3RGK neighbors - Sequence/Alignment Viewer B&FG 3e View Edit Mouse Mode Unaligned Justification Imports BRGK A -GLSDGEWQLVLNVWGKV e a DIPGHGQEVLIRLFKGHPETLEKFDRFKHLK SEDEMK. K SAVTALWGK V ~~ NVDE V G G E AL GR L L V V Y PWT QR F F E S F G D L ST P D A V M

VAST: information listed for each structural neighbor

- checkbox: allows for selection of individual neighbors;
- PDB: four-character PDB-identifier of the structural neighbor;
- PDB chain name;
- MMDB domain identifier;
- VAST structure similarity score based on the number of related secondary structure elements and the quality of the superposition;
- RMSD: root-mean-square superposition residual in angstroms (a descriptor of overall structural similarity);
- NRES: number of equivalent pairs of Cα atoms superimposed between the two structures (the alignment length, i.e., how many residues have been used to calculate the three-dimensional superposition);
- %Id: percent identical residues in the aligned sequence region;
- description: string parsed from PDB records;
- metric (Loop Hausdorff Metric): describes how well two structures match in loop regions; and
- gapped score: combines RMSD, the length of the alignment, and the number of gapped regions.

Integrated views of universe of protein folds

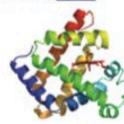
- Chothia (1992) predicted a total of 1500 protein folds
- It is challenging to map protein fold space because of the varying definitions of domains, folds, and structural elements
- We can consider three resources: CATH, SCOP, and the Dali Domain Dictionary
- Structural Classification of Proteins (SCOP) database provides a comprehensive description of protein structures and evolutionary relationships based upon a hierarchical classification scheme. SCOPe is a SCOP extended database.

Holdings of the SCOP-e database

Class	Number of folds	Number of proteins	
All alpha proteins	284	46,456	
All beta proteins	174	48,724	
Alpha and beta proteins (α/β)	147	51,349	
Alpha and beta proteins ($\alpha + \beta$)	376	53,931	
Multidomain proteins	66	56,572	
Membrane and cell surface proteins	57	56,835	
Small proteins	90	56,992	
Coiled coil proteins	7	57,942	
Low resolution protein structures	25	58,117	
Peptides	120	58,231	
Designed proteins	44	58,788	
Total	1390	603,937	

SCOP-e database: hierarchy of terms

The results of a search for myoglobin are shown, including its membership in a class (all alpha proteins), fold, superfamily, and family.

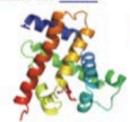

Lineage for Protein: Myoglobin

- Root: SCOPe 2.03
- Class a: All alpha proteins [46456] (284 folds)
- Fold <u>a.1: Globin-like</u> [46457] (2 superfamilies) core: 6 helices; folded leaf, partly opened
- Superfamily a.1.1: Globin-like [46458] (5 families) S
- Family a.1.1.2: Globins [46463] (27 protein domains) Heme-binding protein
- Protein Myoglobin [46469] (9 species)

Species:

Asian elephant (Elephas maximus) [TaxId:9783] [46476] (1 PDB entry)

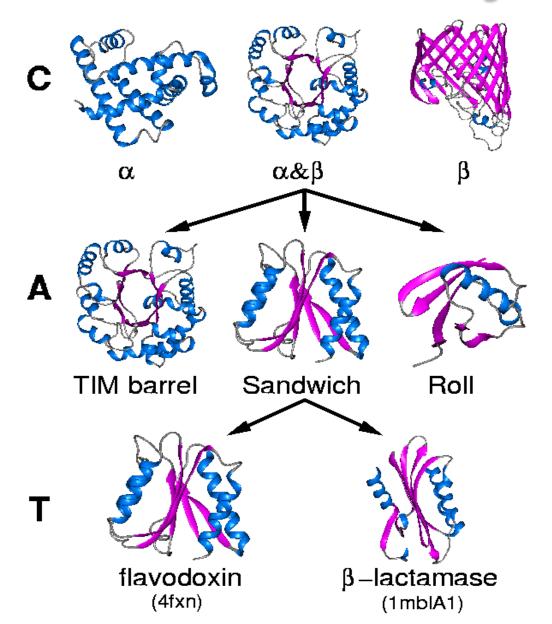
Domain for 1emy:



Domain dlemya: lemy A: [15204] complexed with cyn, hem

Two of the myoglobin structures are shown

Common seal (Phoca vitulina) [TaxId:9720] [46472] (1 PDB entry)


Domain for 1mbs:

Domain d1mbsa : 1mbs A: [15156] complexed with hem

B&FG 3e Fig. 13.6 Page 613

The CATH Hierarchy

CATH organizes protein structures by a hierarchical scheme of class, architecture, topology (fold family), and homologous superfamily

Globins are highlighted.

Few Secondary Alpha Beta Mainly Alpha Mainly Beta Structures 1.10.490.10 Globins 1,10,490,10 lass rchitecture opology omologous Superfamily A 1.10 A 3.40 A 3.30 A 2.60 3-Layer(aba) Sandwich 2-Layer Sandwich Orthogonal Bundle Sandwich

B&FG 3e Fig. 13.17 Page 614

CATH globin superfamily

EC Diversity

Union Ell amoratorio

Digerbandy Superposition
Classification / Ocenamic
Algorisms
Structural Respirationshoot
Functional Associations
Taxonomy Diceses
Mail-Oursain Organisation

Functional Families

Overview of the Structural Gusters (SC) and Functional Families (FF) within this CATH Superfamily.

show 60 amutators Unique GO terms .> Structural Diversity Direction above in within this Assistant from No.

GO Diversity

.

Species Diversity

B&FG 3e Fig. 13.18 Page 615

Superposition of globin superfamily members in CATH

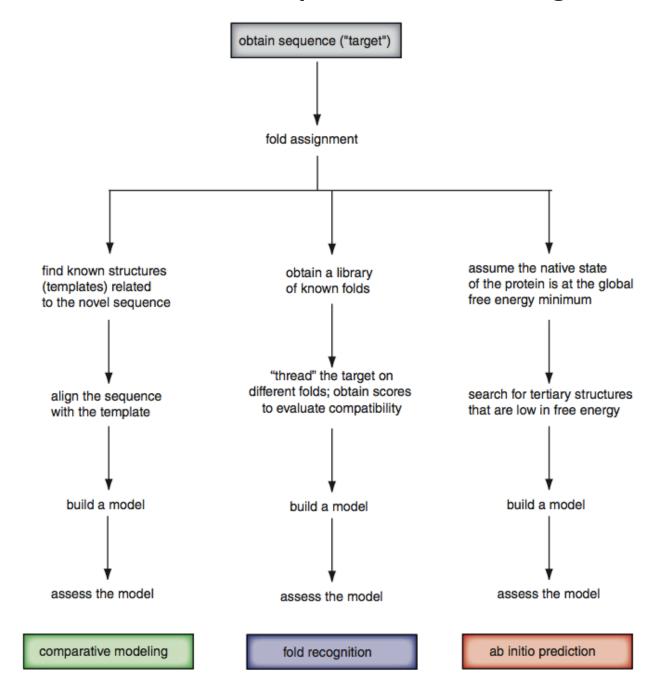
B&FG 3e Fig. 13.18 Page 615

Outline

Overview of protein structure Principles of protein structure Protein Data Bank

Protein structure prediction

Intrinsically disordered proteins


Protein structure and disease

There are three main approaches to protein structure prediction.

- Homology modeling (comparative modeling). This is most useful when a template (protein of interest) can be matched (e.g. by BLAST) to proteins of known structure.
- 2. Fold recognition (threading). A target sequence lacks identifiable sequence matches and yet may have folds in common with proteins of known structure.
- 3. Ab initio prediction (template-free modeling). Assumes: (1) all the information about the structure of a protein is contained in its amino acid sequence; and (2) a globular protein folds into the structure with the lowest free energy.

Three main structure prediction strategies

B&FG 3e Fig. 13.20 Page 618

sequence identity	model accuracy	resolution	technique	applications
100%	100%	1.0 Å	X-ray crystallography, NMR	Studying catalytic mechanisms Designing and improving ligands Prediction of protein partners
50%	95%	1.5 Å	comparative protein structural modeling	Defining antibody epitopes Supporting site-directed mutagenesis
30%	80%	3.5 Å	threading	Refining NMR structures
<<20%	80 aa	4-8 Å	_	Fitting into low-resolution electron density
			de novo structure prediction	Identifying regions of conserved surface residues

B&FG 3e Fig. 13.21 Page 620

Websites for structure prediction by comparative modeling, and for quality assessment

Website	Comment	URL
3D-JIGSAW	Laboratory of Paul Bates	http://bmm.cancerresearchuk. org/~3djigsaw/
Geno3D	POLE	http://pbil.ibcp.fr/htm/index.php
MODELLER	From Andrej Sali's group	http://www.salilab.org/modeller/
PredictProtein	Laboratory of Burkhard Rost	http://www.predictprotein.org/
SWISS-MODEL	ExPASy	http://swissmodel.expasy.org/
PROCHECK	Quality assessment	http://www.ebi.ac.uk/thornton- srv/software/PROCHECK/
VERIFY3D	Quality assessment	http://nihserver.mbi.ucla.edu/ Verify_3D/
WHATIF	Quality assessment	http://swift.cmbi.ru.nl/whatif/

Outline

Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction

Intrinsically disordered proteins

Protein structure and disease

Intrinsic disorder

- Many proteins do not adopt stable three-dimensional structures, and this may be an essential aspect of their ability to function properly.
- Intrinsically disordered proteins are defined as having unstructured regions of significant size such as at least 30 or 50 amino acids.
- Such regions do not adopt a fixed three-dimensional structure under physiological conditions, but instead exist as dynamic ensembles in which the backbone amino acid positions vary over time without adopting stable equilibrium values.
- The Database of Intrinsic Disorder is available at http://www.disprot.org.

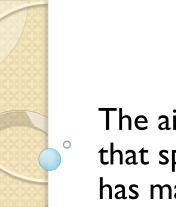
Outline

Overview of protein structure
Principles of protein structure
Protein Data Bank
Protein structure prediction
Intrinsically disordered proteins

Protein structure and disease

Protein structure and human disease

In some cases, a single amino acid substitution can induce a dramatic change in protein structure. For example, the DF508 mutation of CFTR alters the a helical content of the protein, and disrupts intracellular trafficking.


Other changes are subtle. The E6V mutation in the gene encoding hemoglobin beta causes sickle-cell anemia. The substitution introduces a hydrophobic patch on the protein surface, leading to clumping of hemoglobin molecules.

Protein structure and disease

Disease	OMIM	Gene/Protein	RefSeq	PDB
Alzheimer disease	#104300	Amyloid precursor protein	NP_000475.1	2M4J
Cystic fibrosis	#219700	CFTR	NP_000483.3	2LOB
Huntington disease	#143100	Huntingtin	NP_002102.4	4FED
Creutzfeldt-Jakob disease	#123400	Prion protein	NP_000302.1	2M8T
Parkinson disease	#168600	alpha-synuclein isoform NACP140	NP_000336.1	2M55
Sickle cell anemia	#603903	Hemoglobin beta	NP_000509.1	2M6Z

B&FG 3e Tab. 13.10 Page 624 Examples of proteins associated with diseases for which subtle change in protein sequence leads to change in structure.

Perspective

The aim of structural genomics is to define structures that span the entire space of protein folds. This project has many parallels to the Human Genome Project. Both are ambitious endeavors that require the international cooperation of many laboratories. Both involve central repositories for the deposit of raw data, and in each the growth of the databases is exponential.

It is realistic to expect that the great majority of protein folds will be defined in the near future. Each year, the proportion of novel folds declines rapidly. A number of lessons are emerging:

- proteins assume a limited number of folds;
- a single three-dimensional fold may be used by proteins to perform entirely distinct functions; and
- the same function may be performed by proteins using entirely different folds.