Chapter 12 Protein analysis and proteomics

0

Bioinformatics and Functional Genomics 3rd edition (2015) Jonathan Pevsner, Ph.D.

Outline

Introduction

Techniques for identifying proteins Four perspectives on proteins Perspective 1: Protein Domains and Motifs Perspective 2: Physical Properties of Proteins Introduction to Perspectives 3 and 4: Gene Ontology Perspective 3: Protein Localization Perspective 4: Protein Function

Learning objectives

Upon completing this material you should be able to:

 describe techniques to identify proteins including Edman degradation and mass spectrometry;

- define protein domains, motifs, signatures, and patterns;
 describe physical properties of proteins from a bioinformatics perspective;
- describe how protein localization is captured by bioinformatics tools; and
- provide definitions of protein function.

B&FG 3e

Page 539

Protein databases

UniProt is a key database that includes UniProtKB/Swiss-Prot (~500,000 reviewed protein entries).

InterPro (http://www.ebi.ac.uk/interpro/) from the European Bioinformatics provides functional classification of proteins.

You can access UniProt, InterPro and many other protein databases through BioMart (web-based at www.ensembl.org) or the R package biomaRt.

B&FG 3e Page 540 The Human Proteome Organisation (HUPO) Proteomics Standards Initiative (PSI)

Goals: defining standards for proteomic data representation to facilitate the comparison, exchange, and verification of data

B&FG 3e **Page 542**

The Human Proteome Organisation (HUPO) Proteomics Standards Initiative (PSI)

Work groups

Gel Electrophoresis
Mass Spectrometry
Molecular Interactions
Protein Modifications
Proteomics Informatics
Sample Processing

Themes

Controlled vocabularies# MIAPE: Minimum information about a proteomicsexperiment

B&FG 3e Page 542

The Human Proteome Organisation (HUPO) Proteomics Standards Initiative (PSI) http://www.psidev.info/

The HUPO Proteomics Standards Inititative defines community standards for data representation in proteomics to facilitate data comparison, exchange and verification.

HUPO-PSI Working Groups and Outputs

Working Groups	Guidelines	v.	Formats	v.		Controlled Vocabularies	v.
	MIMIx	1.1.2	PSI-MI XML	2.5.4	DSL MLCV	250	
Molecular Interactions	MIABE	1.0.0	(incl. MITAB)			PSI-MI CV	2.5.0
	MIAPAR	1.0.0	PSI-PAR	1.0.0		PAR CV	n/a
			mzML	1.1.0			
Mass Spectrometry	Mass spectrometry (MIAPE_MS)	2.98	TraML	1.0.0			
spectrometry	(mzData				

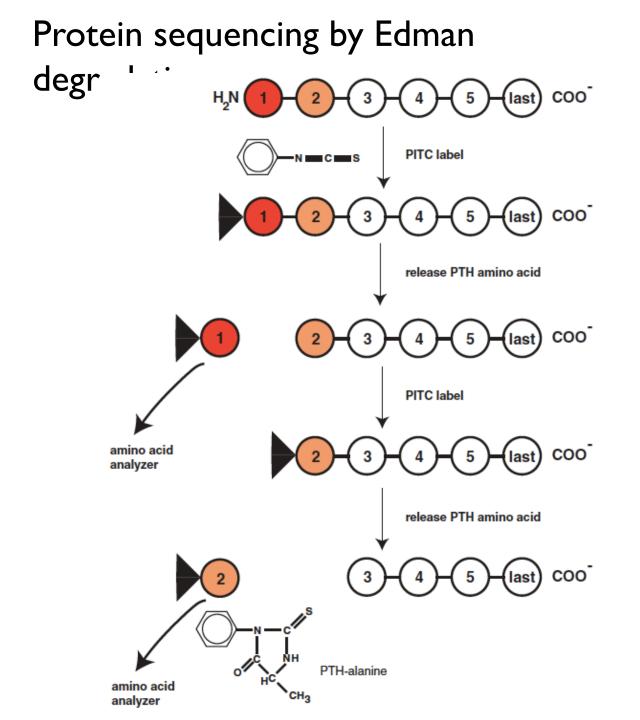
B&FG 3e Page 542

Outline

Introduction

Techniques for identifying proteins

Four perspectives on proteins Perspective I: Protein Domains and Motifs Perspective 2: Physical Properties of Proteins Introduction to Perspectives 3 and 4: Gene Ontology Perspective 3: Protein Localization Perspective 4: Protein Function

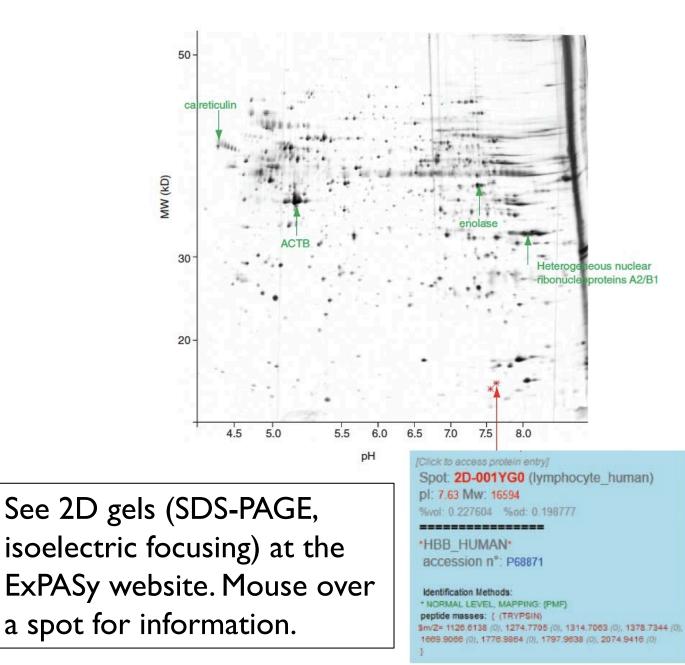

B&FG 3e **Page 543**

Protein sequencing by Edman degradation

Beginning in the 1949 Pehr Edman developed a method to determine the amino-terminal amino acid sequence of a peptide (protein).

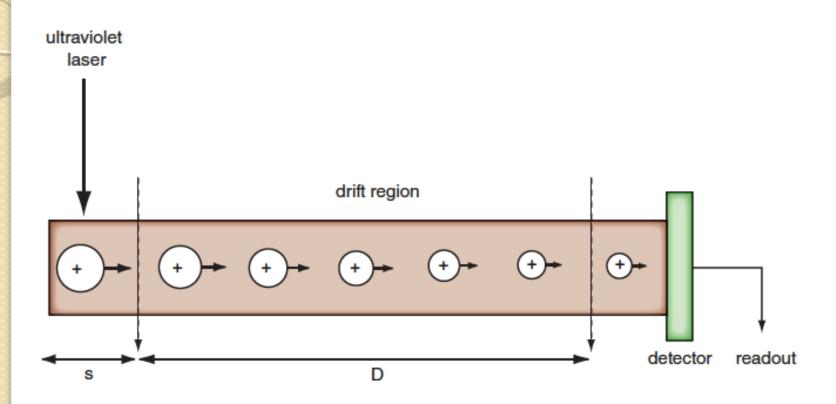
The method involves modification of the Nterminal amino acid of a purified protein by phenylisothiocyanate, cleavage, and identification of the residue.

B&FG 3e Fig. 12.1 Page 543



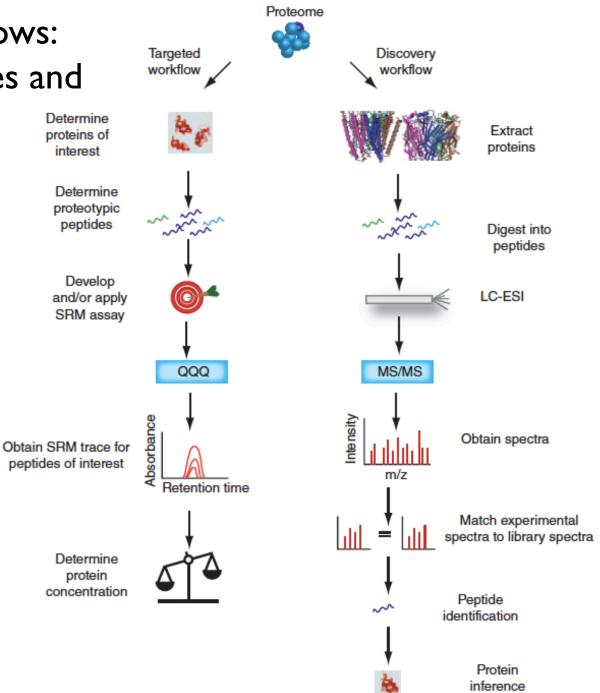
B&FG 3e Fig. 12.1 Page 544 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is useful to separate proteins based on molecular mass.

Two dimensional SDS-PAGE includes a second separation of proteins in the basis of charge: a protein migrates in an electric field to its isoelectric point, the pH at which the net charge is neutral.


Proteins on ID or 2D SDS-PAGE can be visualized with dyes, identified with an antibody (Western blotting), sequenced by Edman degradation, or identified by mass spectrometry (MS).

Polyacrylamide gel electrophoresis (PAGE)

B&FG 3e Fig. 12.2 Page 545

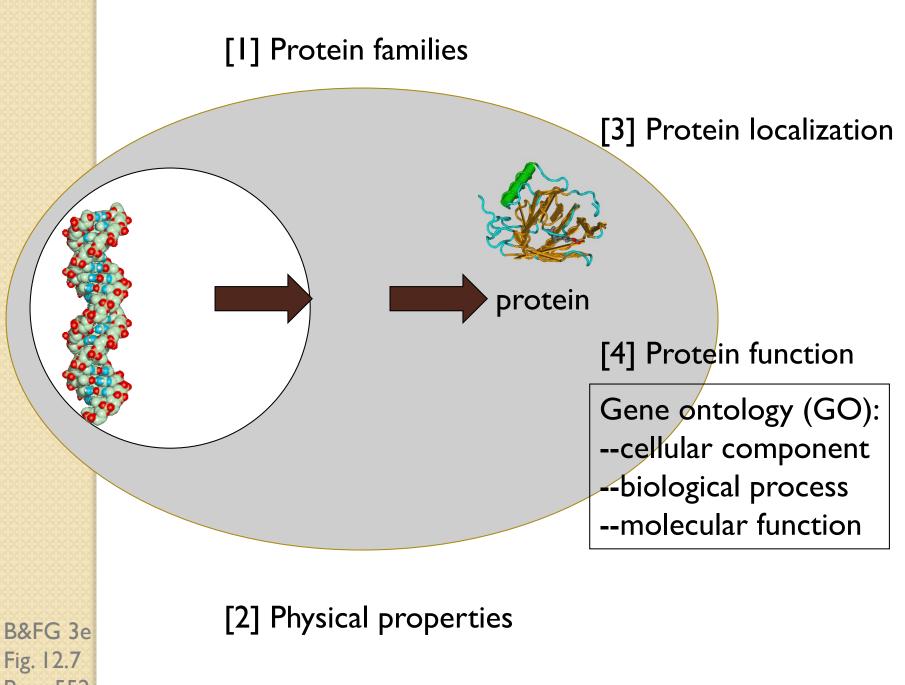

Matrix-assisted laser desorption/ionization time-of-flight spectroscopy (MALDI-TOF)

Mass spectrometry (MS) enables sensitive identification of proteins

B&FG 3e Fig. 12.4 Page 548

Two MS workflows: targeted analyses and discovery

B&FG 3e Fig. 12.5 Page 549


Outline

Introduction Techniques for identifying proteins

Four perspectives on proteins

Perspective I: Protein Domains and Motifs

Perspective 2: Physical Properties of Proteins Introduction to Perspectives 3 and 4: Gene Ontology Perspective 3: Protein Localization Perspective 4: Protein Function

Page 552

Perspective I: Protein domains and motifs

Definitions

Signature:

• a protein category such as a domain or motif

Definitions

Signature:

• a protein category such as a domain or motif

Domain:

- a region of a protein that can adopt a 3D structure
- a fold
- a family is a group of proteins that share a domain
- examples: zinc finger domain immunoglobulin domain

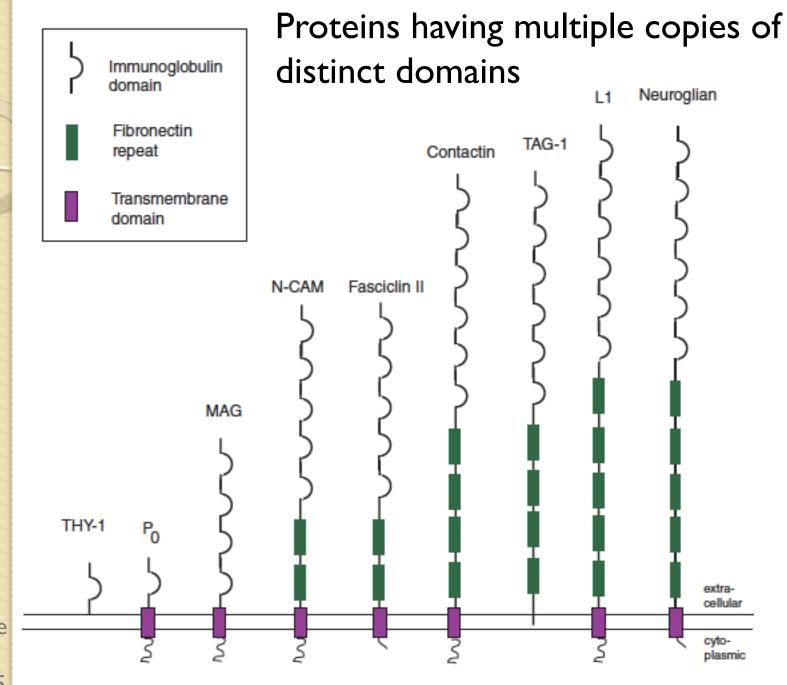
Motif (or fingerprint):

- a short, conserved region of a protein
- typically 10 to 20 contiguous amino acid residues

Definitions from the InterPro database at EBI

Term	Definition
Family	A protein family is a group of proteins that share a common evolutionary origin reflected by their related functions, similarities in sequence, or similar primary, secondary or tertiary structure. A match to an InterPro entry of this type indicates membership of a protein family.
Domain	Domains are distinct functional, structural, or sequence units that may exist in a variety of biological contexts. A match to an InterPro entry of this type indicates the presence of a domain.
Repeat	A match to an InterPro entry of this type identifies a short sequence that is typically repeated within a protein.
Site	A match to an InterPro entry of this type indicates a short sequence that contains one or more conserved residues. The type of sites covered by InterPro are active sites, binding sites, post-translational modification sites, and conserved sites.

Source: Thtp://www.ebi.ac.uk/interpro/.


B&FG 3e Tab. 12.1 Page 553

10 most common domains (human)

InterPro accession	Proteins matched	Name of domain
IPR027417	1022	P-loop containing nucleoside triphosphate hydrolase
IPR007110	1015	Immunoglobulin-like domain
IPR007087	806	Zinc finger; C2H2
IPR015880	801	Zinc finger; C2H2-like
IPR017452	796	GPCR; rhodopsin-like; 7TM
IPR000276	789	G protein-coupled receptor; rhodopsin-like
IPR003599	623	Immunoglobulin subtype
IPR013106	619	Immunoglobulin V-set
IPR011009	560	Protein kinase-like domain
IPR000719	513	Protein kinase; catalytic domain

B&FG 3e Tab. 12.3 Page 554

Source: InterPro (2015)

B&FG 3e Fig. 12.8 Page 555 According to InterPro at EBI (http://www.ebi.ac.uk/interpro/):

A domain is an independent structural unit, found alone or in conjunction with other domains or repeats. Domains are evolutionarily related.

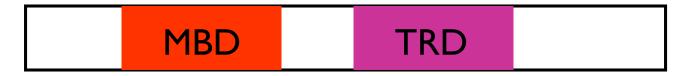
According to SMART (http://smart.embl-heidelberg.de):

A domain is a conserved structural entity with distinctive secondary structure content and a hydrophobic core. Homologous domains with common functions usually show sequence similarities.

Varieties of protein domains

Extending along the length of a protein

domain x	protein 1
domain x	protein 2

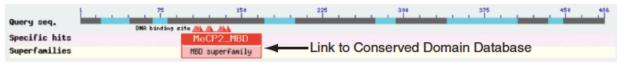

Occupying a subset of a protein sequence

	domain x		protein 1
domain x		prote	ein 2

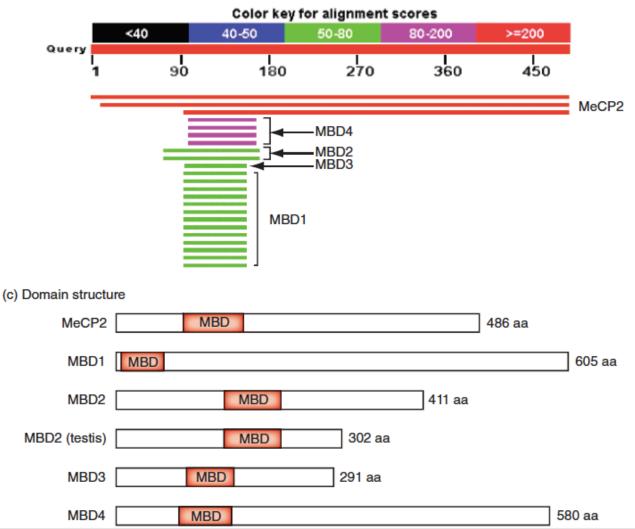
Occurring one or more times

domain x	domain x		domain x		protein 1
domain x		_	protei	n 2	

B&FG 3e Fig. 12.9 Page 556 Example of a protein with domains: Methyl CpG binding protein 2 (MeCP2)

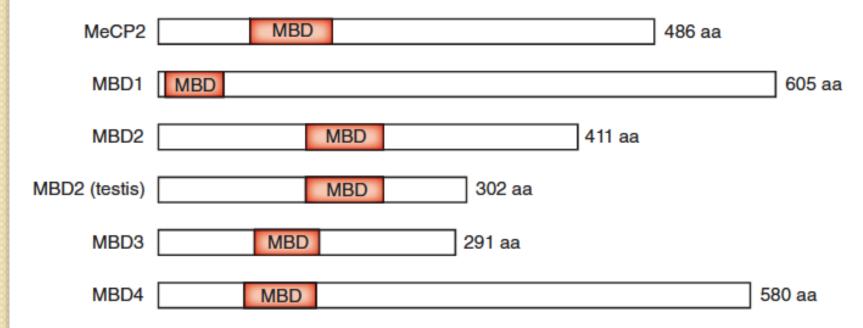


The protein includes a methylated DNA binding domain (MBD) and a transcriptional repression domain (TRD). MeCP2 is a transcriptional repressor.


Mutations in the gene encoding MeCP2 cause Rett Syndrome, a neurological disorder affecting girls primarily.

Result of an MeCP2 BLASTP search: A methyl-binding domain shared by several proteins

(a) BLAST result links

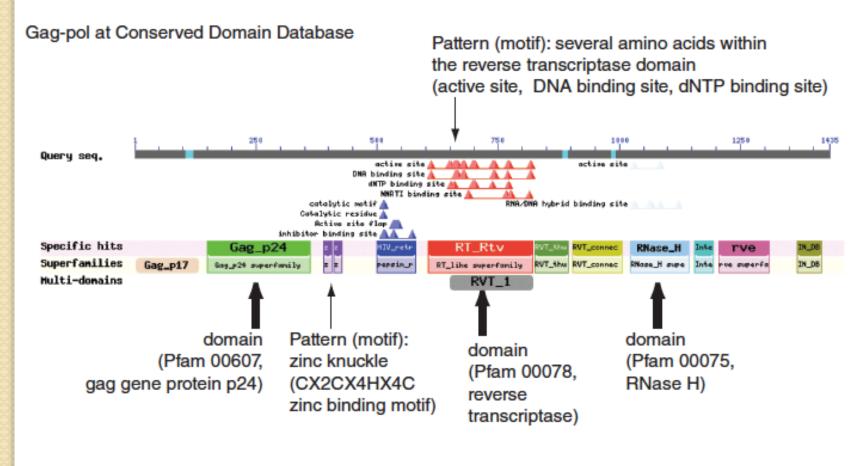


(b) BLAST alignments

B&FG 3e Fig. 12.10 Page 557

Are proteins that share only a domain homologous?

- Definitely yes with respect to the domain
- Definitely no with respect to regions outside the shared domain
- Homology implies descent from a common ancestor, which only occurred with respect to the domain.

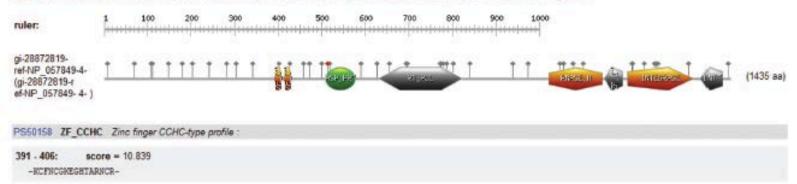

Pol (NP_789740), 995 amino acids long Gag-Pol (NP_057849), 1435 amino acids

- cleaved into three proteins with distinct activities:
 - -- aspartyl protease
 - -- reverse transcriptase
 - -- integrase

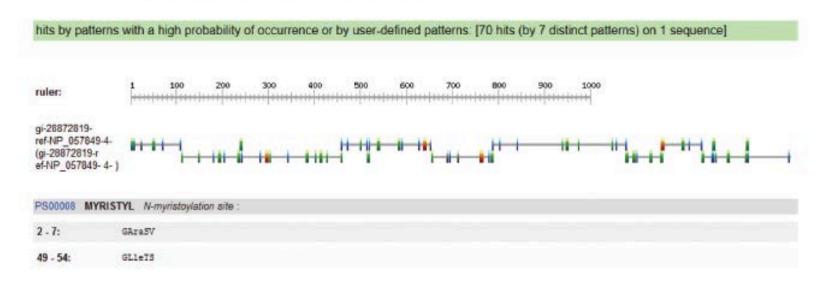
We will explore HIV-1 pol and other proteins at the Expert Protein Analysis System (ExPASy) server.

Visit www.expasy.org/

Searches for a multidomain protein: HIV gag-pol


B&FG 3e Fig. 12.11 Page 558

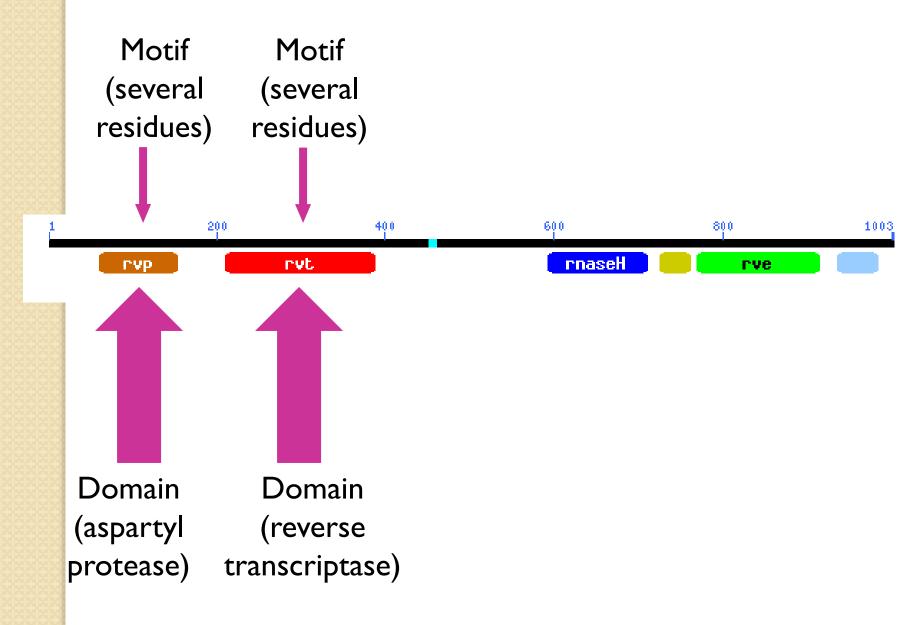
Searches for a multidomain protein: HIV gag-pol


PROSITEscan for Gag-pol (zinc finger CCHC-type profile)

hits by profiles: [8 hits (by 7 distinct profiles) on 1 sequence]

Upper case represents match positions, lower case insert positions, and the V symbol represents deletions relative to the matching profile.

PROSITEscan for Gag-pol (N-myristoylation sites)


B&FG 3e Fig. 12.11 Page 558 UniProt (www.uniprot.org): key proteomics database

Three protein databases recently merged to form UniProt:

- SwissProt
- TrEMBL (translated European Molecular Biology Lab)
- Protein Information Resource (PIR)

You can search for information on your favorite protein there; a BLAST server is provided.

Proteins can have both domains and motifs (patterns)

A motif (or fingerprint) is a short, conserved region of a protein. Its size is often 10 to 20 amino acids.

Simple motifs include transmembrane domains and phosphorylation sites. These do not imply homology when found in a group of proteins.

PROSITE (www.expasy.org/prosite) is a dictionary of motifs (there are currently 1600 entries). In PROSITE, a <u>pattern</u> is a qualitative motif description (a protein either matches a pattern, or not). In contrast, a <u>profile</u> is a quantitative motif description. We will encounter profiles in Pfam, ProDom, SMART, and other databases. A signature is a protein category such as a domain or motif.

You can learn about domains in databases such as InterPro and Pfam.

A motif (or fingerprint) is a short, conserved sequence. You can study motifs at Prosite at ExPASy.

Perspective 2: Physical properties of proteins

Post-translational modifications of proteins at InterPro

Accession	Post-translational modification site
IPR000152	EGF-type aspartate/asparagine hydroxylation site
IPR001020	Phosphotransferase system, HPr histidine phosphorylation site
IPR002114	Phosphotransferase system, HPr serine phosphorylation site
IPR002332	Nitrogen regulatory protein P-II, urydylation site
IPR004091	Chemotaxis methyl-accepting receptor, methyl-accepting site
IPR006141	Intein splice site
IPR006162	Phosphopantetheine attachment site
IPR012902	Prokaryotic N-terminal methylation site
IPR018051	Surfactant-associated polypeptide, palmitoylation site
IPR018070	Neuromedin U, amidation site
IPR018243	Neuromodulin, palmitoylation/phosphorylation site
IPR018303	P-type ATPase, phosphorylation site
IPR019736	Synapsin, phosphorylation site
IPR019769	Translation elongation factor, IF5A, hypusine site
IPR021020	Adhesin, Dr family, signal peptide

B&FG 3e Tab. 12.5 Page 559 Many websites are available for the analysis of individual proteins. ExPASy and ISREC are two excellent resources.

The accuracy of these programs is variable. Predictions based on primary amino acid sequence (such as molecular weight prediction) are likely to be more trustworthy. For many other properties (such as posttranslational modification of proteins by specific sugars), experimental evidence may be required rather than prediction algorithms.

Introduction to Perspectives 3 and 4: Gene Ontology (GO) Consortium

An ontology is a description of concepts. The GO Consortium compiles a dynamic, controlled vocabulary of terms related to gene products.

There are three organizing principles: Molecular function Biological process Cellular compartment

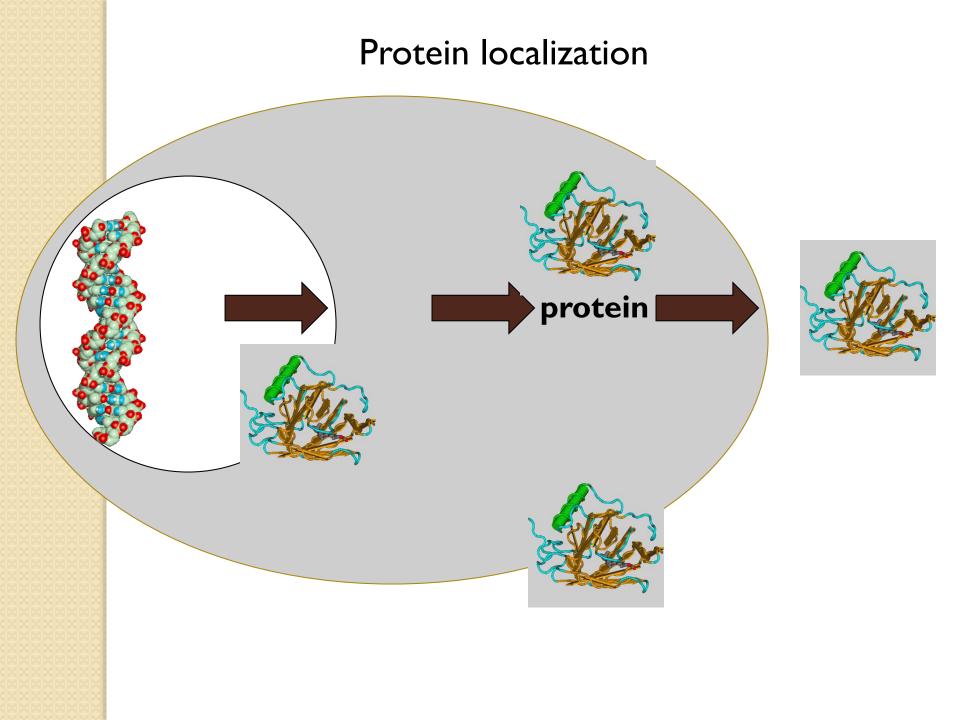
You can visit GO at http://www.geneontology.org. There is no centralized GO database. Instead, curators of organism-specific databases assign GO terms to gene products for each organism.

B&FG 3e Page 566 IC Inferred by curator IDA Inferred from direct assay IEA Inferred from electronic annotation IEP Inferred from expression pattern IGI Inferred from genetic interaction Inferred from mutant phenotype IMP **IPI** Inferred from physical interaction ISS Inferred from sequence or structural similarity NAS Non-traceable author statement ND No biological data TAS Traceable author statement

B&FG 3e Tab. 12.8 Page 568

GO terms are assigned to NCBI Gene entries

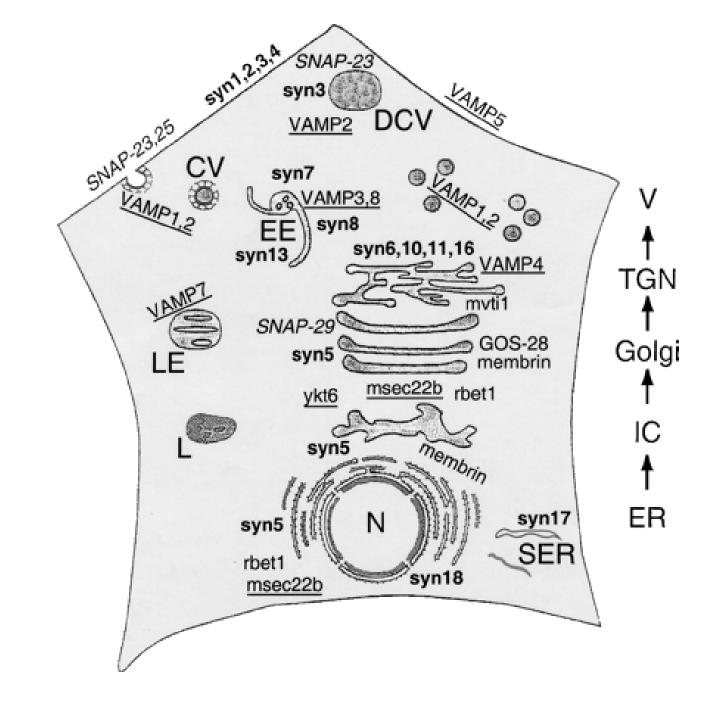
GeneOntology	Provided by <u>GOA</u>

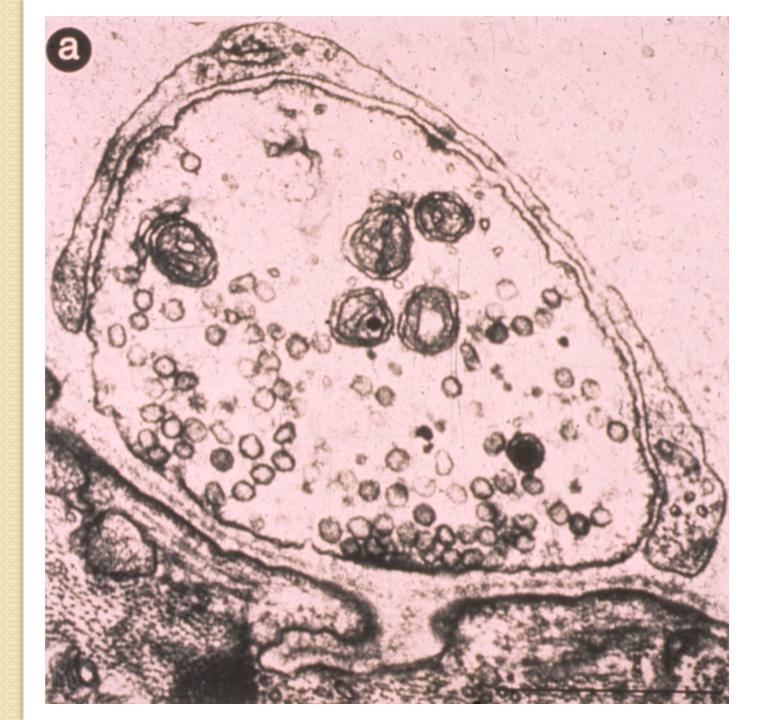

Function	Evic	Evidence	
heme binding	IEA		
hemoglobin binding	IDA	PubMed	
iron ion binding	IEA		
metal ion binding	IEA		
molecular function	ND		
oxygen binding	IDA	PubMed	
oxygen binding	IEA		
oxygen transporter activity	IEA		
oxygen transporter activity	NAS	PubMed	
selenium binding	IDA	PubMed	

Process	Evidence	
biological process	ND	
nitric oxide transport	NAS	<u>PubMed</u>
oxygen transport	IEA	
oxygen transport	NAS	<u>PubMed</u>
oxygen transport	TAS	<u>PubMed</u>
positive regulation of nitric oxide biosynthetic process	NAS	<u>PubMed</u>
transport	IEA	

Component	Evidence	
hemoglobin complex	IEA	
hemoglobin complex	NAS <u>PubMed</u>	
hemoglobin complex	TAS <u>PubMed</u>	

Perspective 3: Protein localization





Proteins may be localized to intracellular compartments, cytosol, the plasma membrane, or they may be secreted. Many proteins shuttle between multiple compartments.

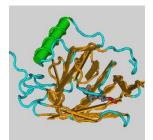
A variety of algorithms predict localization, but this is essentially a cell biological question.

B&FG 3e **Page 570**

Results of Subprograms

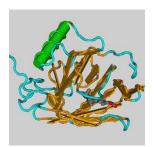
PSG:	а	new	signal	peptide	prediction	method
------	---	-----	--------	---------	------------	--------

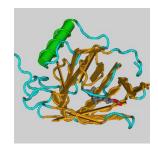
N-region:	length 2;	pos.chg 1;	neg.chg O
H-region:	length 14;	peak value	10.03
PSG score:	5.63		


GvH: von Heijne's method for signal seq. recognition GvH score (threshold: -2.1): 3.93 possible cleavage site: between 16 and 17

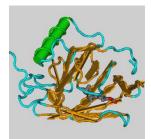
>>> Seems to have a cleavable signal peptide (1 to 16)

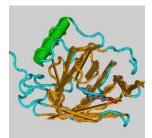
Perspective 4: Protein function



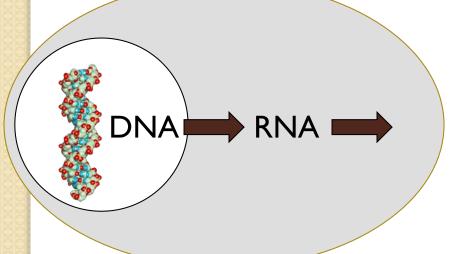

Function refers to the role of a protein in the cell. We can consider protein function from a variety of perspectives. I. Biochemical function (molecular function)

RBP binds retinol, could be a carrier


2. Functional assignment based on homology

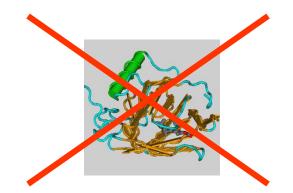

RBP could be a carrier too Other carrier proteins

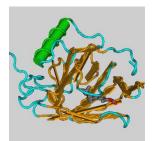
3. Function based on structure


RBP forms a calyx

4. Function based on ligand binding specificity

RBP binds vitamin A


5. Function based on cellular process


RBP is abundant, soluble, secreted

6. Function based on biological process

RBP is essential for vision

7. Function based on "proteomics" or high throughput "functional genomics"

High throughput analyses show...

RBP levels elevated in renal failure RBP levels decreased in liver disease

Functional assignment of enzymes: the EC (Enzyme Commission) system

Oxidoreductases	1,003
Transferases	I,076
Hydrolases	1,125
Lyases	356
Isomerases	156
Ligases	126

Functional assignment of proteins: Clusters of Orthologous Groups (COGs)

Information storage and processing

Cellular processes

Metabolism

Poorly characterized

Perspective

Our understanding of the properties of proteins has advanced dramatically, from the level of biochemical function to the role of proteins in cellular processes. Advances in instrumentation have propelled mass spectrometry into a leading role for many proteomics applications.

B&FG 3e Page 574 Many of the experimental and computational strategies used to study proteins have limitations.

- Two-dimensional protein gels are most useful for studying relatively abundant proteins, but thousands of proteins expressed at low levels are harder to characterize.
- Experimental approaches are extremely challenging in practice, as shown by the ABRF critical assessments.
- Many computational approaches suffer from high false positive error rates, reflecting the difficulty of obtaining adequate training sets.

B&FG 3e Page 574