EECS 4425:

Introductory Computational Bioinformatics

Fall 2018

Suprakash Datta

datta [at] cse.yorku.ca

Office: CSEB 3043

Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/4425

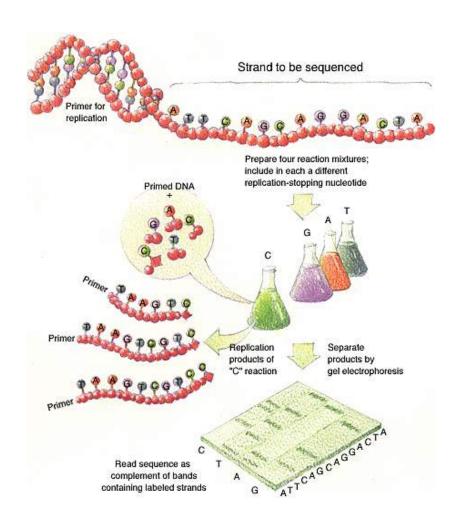
Next

Graph algorithms

Some of the following slides are based on slides from www.bioalgorithms.info

DNA Sequencing

- Shear DNA into millions of small fragments
- Read 500 700
 nucleotides at a
 time from the
 small fragments
 (Sanger method)



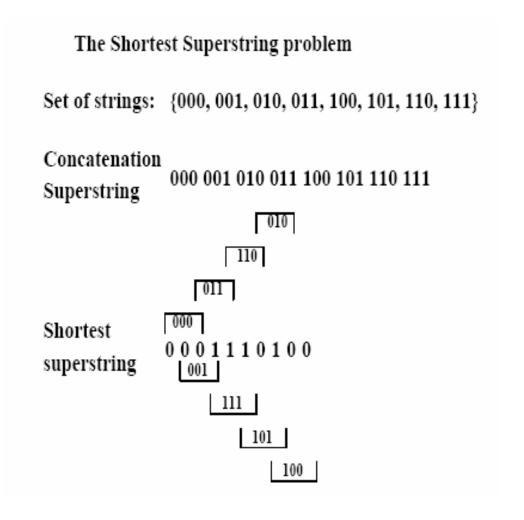
Fragment Assembly

- Computational Challenge: assemble individual short fragments (reads) into a single genomic sequence ("superstring")
- Until late 1990s the shotgun fragment assembly of human genome was viewed as intractable problem

Shortest Superstring Problem

- Problem: Given a set of strings, find a shortest string that contains all of them
- Input: Strings s_1, s_2, \ldots, s_n
- Output: A string s that contains all strings s_1, s_2, \ldots, s_n as substrings, such that the length of s is minimized
- Complexity: NP complete
- Note: this formulation does not take into account sequencing errors

Shortest Superstring Problem: Example



Reducing SSP to TSP

• Define overlap (s_i, s_j) as the length of the longest prefix of s_j that matches a suffix of s_i .

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

What is overlap (s_i , s_i) for these strings?

Reducing SSP to TSP

• Define overlap (s_i, s_j) as the length of the longest prefix of s_j that matches a suffix of s_i .

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

overlap=12

Reducing SSP to TSP

• Define overlap (s_i, s_j) as the length of the longest prefix of s_j that matches a suffix of s_i .

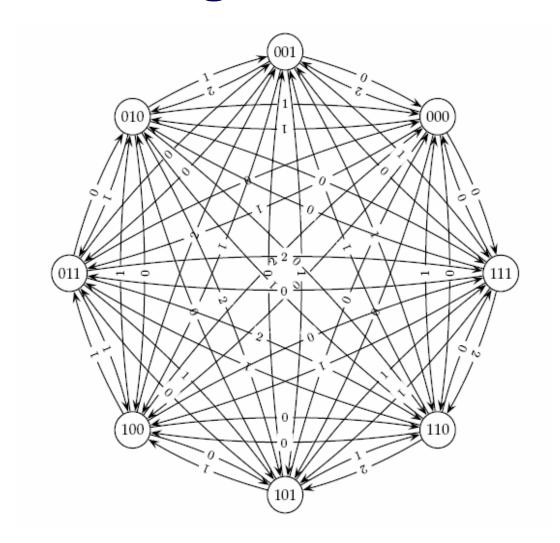
aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

- Construct a graph with n vertices representing the n strings s₁, s₂,...., s_n.
- Insert edges of length overlap (s_i , s_j) between vertices s_i and s_i .
- Find the shortest path which visits every vertex exactly once. This is the **Traveling Salesman Problem** (TSP), which is also NP – complete.

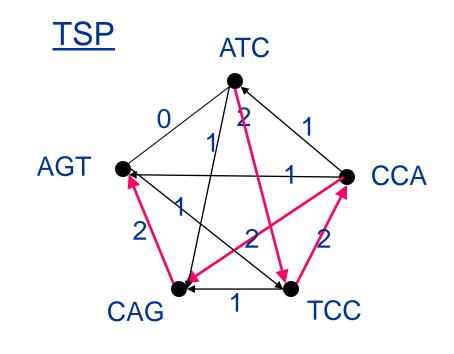
Reducing SSP to TSP (cont'd)



SSP to TSP: An Example

S = { ATC, CCA, CAG, TCC, AGT }

AGT
CCA
ATC
ATCCAGT
TCC
CAG



ATCCAGT

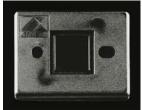
Sequencing by Hybridization (SBH): History

 1988: SBH suggested as an an alternative sequencing method. Nobody believed it will ever work

First microarray prototype (1989)

 1991: Light directed polymer synthesis developed by Steve Fodor and colleagues.

First commercial DNA microarray prototype w/16,000 features (1994)



500,000 features per chip **(2002)**

 1994: Affymetrix develops first 64-kb DNA microarray

How SBH Works

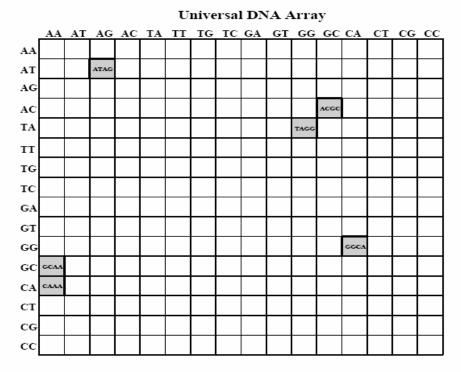
- Attach all possible DNA probes of length / to a flat surface, each probe at a distinct and known location. This set of probes is called the DNA array.
- Apply a solution containing fluorescently labeled DNA fragment to the array.
- The DNA fragment hybridizes with those probes that are complementary to substrings of length / of the fragment.

How SBH Works (cont'd)

 Using a spectroscopic detector, determine which probes hybridize to the DNA fragment to obtain the *I*—mer composition of the target DNA fragment.

 Apply the combinatorial algorithm (below) to reconstruct the sequence of the target DNA fragment from the I – mer composition.

Hybridization on DNA Array



DNA target TATCCGTTT (complement of ATAGGCAAA) hybridizes to the array of all 4-mers:

I-mer composition

- Spectrum (s, l) unordered multiset of all possible (n l + 1) l-mers in a string s of length n
- The order of individual elements in Spectrum (s, I) does not matter
- For s = TATGGTGC all of the following are equivalent representations of Spectrum (s, 3):
 {TAT, ATG, TGG, GGT, GTG, TGC}
 {ATG, GGT, GTG, TAT, TGC, TGG}
 {TGG, TGC, TAT, GTG, GGT, ATG}

I-mer composition

- Spectrum (s, l) unordered multiset of all possible (n l + 1) l-mers in a string s of length n
- The order of individual elements in Spectrum (s, I) does not matter
- For s = TATGGTGC all of the following are equivalent representations of *Spectrum* (s, 3):

```
{TAT, ATG, TGG, GGT, GTG, TGC}
{ATG, GGT, GTG, TAT, TGC, TGG}
{TGG, TGC, TAT, GTG, GGT, ATG}
```

 We usually choose the lexicographically maximal representation as the canonical one.

Different sequences – the same spectrum

 Different sequences may have the same spectrum:

```
Spectrum(GTATCT,2)=
Spectrum(GTCTAT,2)=
{AT, CT, GT, TA, TC}
```

The SBH Problem

Goal: Reconstruct a string from its I-mer composition

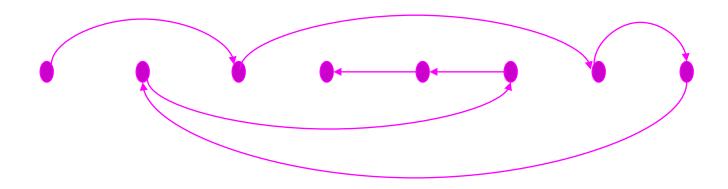
 Input: A set S, representing all I-mers from an (unknown) string s

Output: String s such that Spectrum (s,l)
 S

SBH: Hamiltonian Path Approach

S = { ATG AGG TGC TCC GTC GGT GCA CAG }

H ATG AGG TGC TCC GTC GGT GCA CAG



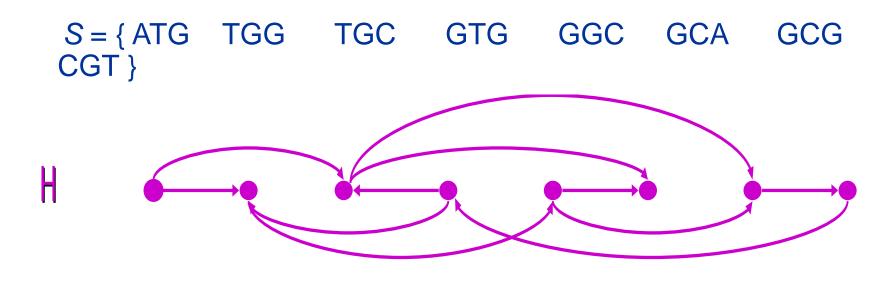
ATG CAGGTCC

Path visited every VERTEX once

11/6/2018 EECS 4425, Fall 2018 20

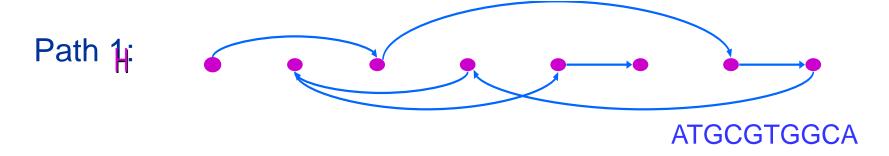
SBH: Hamiltonian Path Approach

A more complicated graph:

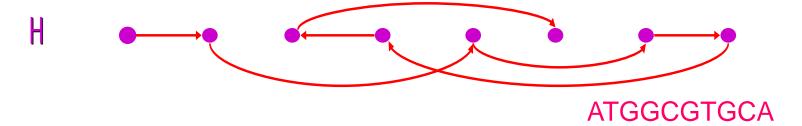


SBH: Hamiltonian Path Approach

 $S = \{ATG TGG TGC GTG GGC GCA GCG CGT\}$



Path 2:

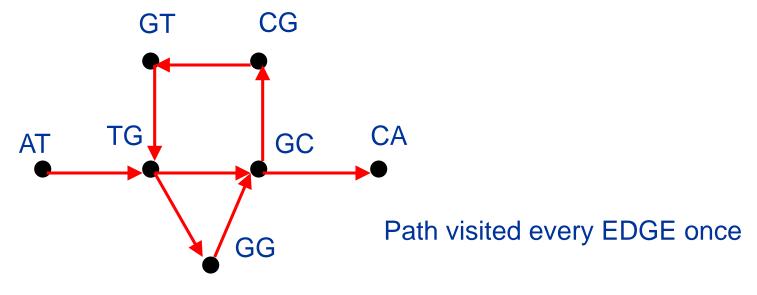


SBH: Eulerian Path Approach

```
S = { ATG, TGC, GTG, GGC, GCA, GCG, CGT }

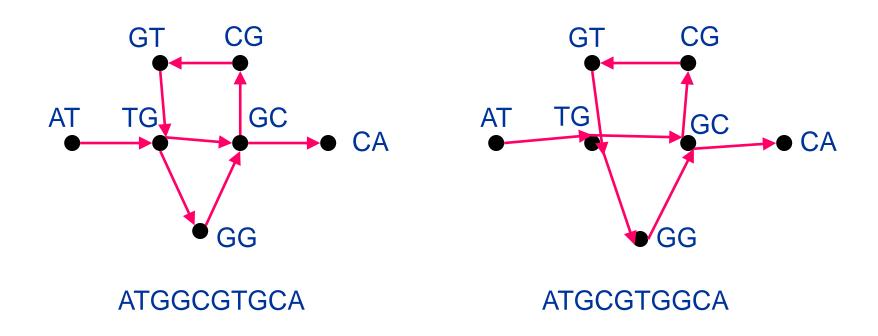
Vertices correspond to ( I – 1 ) – mers : { AT, TG, GC, GG, GT, CA, CG }
```

Edges correspond to *I* – mers from *S*



SBH: Eulerian Path Approach

S = { AT, TG, GC, GG, GT, CA, CG } corresponds to two different paths:



Euler Theorem

 A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing edges:

• Theorem: A connected graph is Eulerian if and only if each of its vertices is balanced.

Euler Theorem: Proof

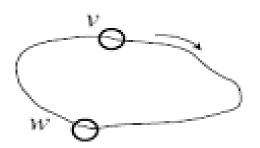
 Eulerian → balanced for every edge entering v (incoming edge) there exists an edge leaving v (outgoing edge). Therefore in(v)=out(v)

$$in(v)=out(v)$$

 Balanced → Eulerian ???

Algorithm for Constructing an Eulerian Cycle

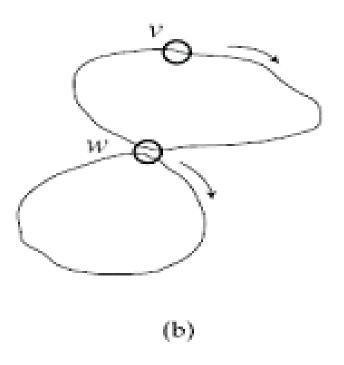
a. Start with an arbitrary vertex v and form an arbitrary cycle with unused edges until a dead end is reached. Since the graph is Eulerian this dead end is necessarily the starting point, i.e., vertex v.



(a)

Algorithm for Constructing an Eulerian Cycle (cont'd)

If cycle from (a) above is not an Eulerian cycle, it must contain a vertex w, which has untraversed edges. Perform step (a) again, using vertex was the starting point. Once again, we will end up in the starting vertex w.



Algorithm for Constructing an Eulerian Cycle (cont'd)

c. Combine the cycles from (a) and (b) into a single cycle and iterate step (b).



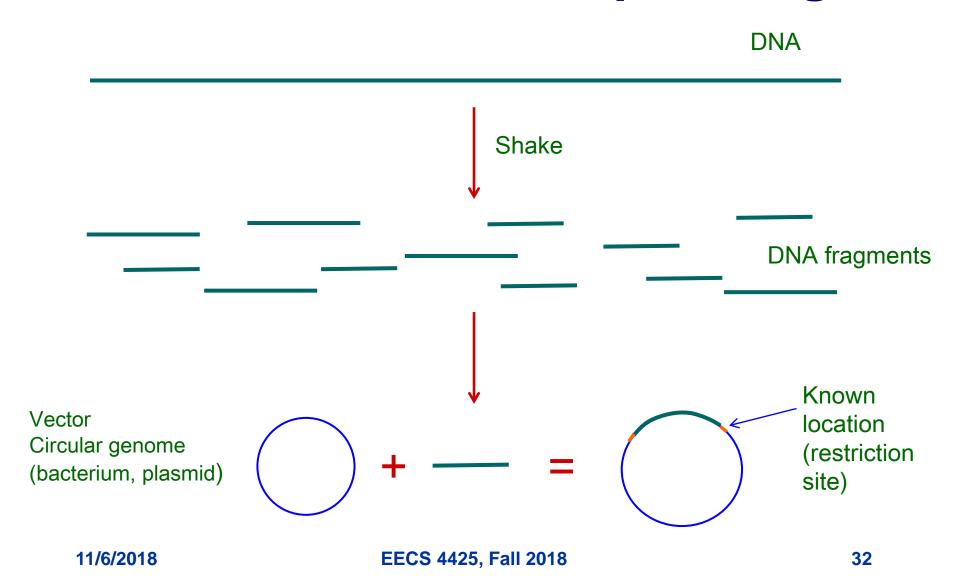
Euler Theorem: Extension

 Theorem: A connected graph has an Eulerian path if and only if it contains at most two semi-balanced vertices and all other vertices are balanced.

Some Difficulties with SBH

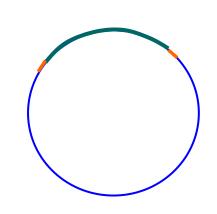
- Fidelity of Hybridization: difficult to detect differences between probes hybridized with perfect matches and 1 or 2 mismatches
- Array Size: Effect of low fidelity can be decreased with longer *I*-mers, but array size increases exponentially in *I*. Array size is limited with current technology.
- Practicality: SBH is still impractical. As DNA microarray technology improves, SBH may become practical in the future
- Practicality again: Although SBH is still impractical, it spearheaded expression analysis and SNP analysis techniques

Traditional DNA Sequencing



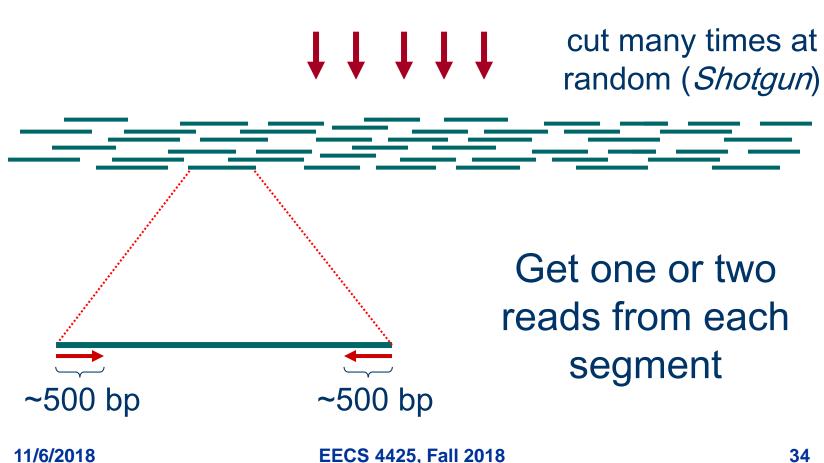
Different Types of Vectors

<u>VECTOR</u>	Size of insert (bp)
Plasmid	2,000 - 10,000
Cosmid	40,000
BAC (Bacterial Artificial Chromosome)	70,000 - 300,000
YAC (Yeast Artificial Chromosome)	> 300,000 Not used much recently

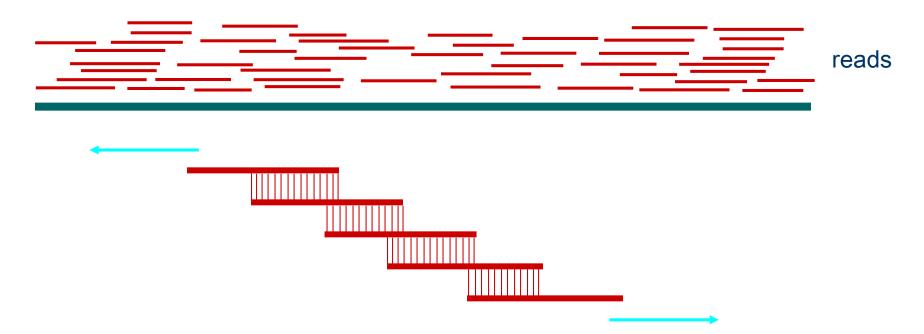


Shotgun Sequencing

genomic segment



Fragment Assembly



Cover region with ~7-fold redundancy

Overlap reads and extend to reconstruct the original genomic region

Read Coverage

Length of genomic segment: L

Number of reads: n Coverage C = nI/L

Length of each read:

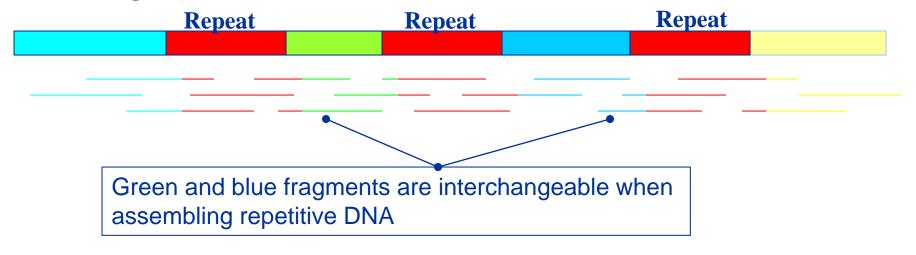
How much coverage is enough?

Lander-Waterman model:

Assuming uniform distribution of reads, *C*=10 results in 1 gapped region per 1,000,000 nucleotides

Challenges in Fragment Assembly

- Repeats: A major problem for fragment assembly
- > 50% of human genome are repeats:
 - over 1 million *Alu* repeats (about 300 bp)
 - about 200,000 LINE repeats (1000 bp and longer)



Repeat Types

• Low-Complexity DNA (e.g. ATATATATACATA...)

Microsatellite repeats $(a_1...a_k)^N$ where $k \sim 3-6$ (e.g. CAGCAGTAGCAGCACCAG)

Transposons/retrotransposons

SINE
 Short Interspersed Nuclear Elements

(e.g., *Alu*: ~300 bp long, 10⁶ copies)

Line
 Long Interspersed Nuclear Elements

~500 - 5,000 bp long, 200,000 copies

LTR retrotransposons
 Long Terminal Repeats (~700 bp) at

each end

Gene Families genes duplicate & then diverge

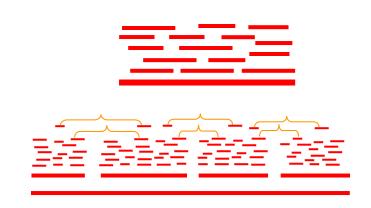
Segmental duplications ~very long, very similar copies

Overlap-Layout-Consensus

Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and contigs into supercontigs



Consensus: derive the DNA sequence and correct read errors

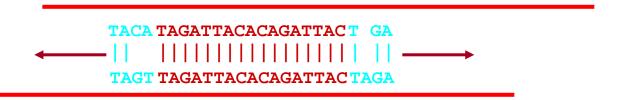
..ACGATTACAATAGGTT...

Overlap

- Find the best match between the suffix of one read and the prefix of another
- Due to sequencing errors, need to use dynamic programming to find the optimal overlap alignment
- Apply a filtration method to filter out pairs of fragments that do not share a significantly long common substring

Overlapping Reads

- Sort all k-mers in reads $(k \sim 24)$
- Find pairs of reads sharing a k-mer
- Extend to full alignment throw away if not >95% similar



Overlapping Reads and Repeats

A k-mer that appears N times, initiates N² comparisons

For an Alu that appears 10⁶ times → 10¹² comparisons – too much

• Solution:

Discard all k-mers that appear more than $t \times \text{Coverage}$, $(t \sim 10)$

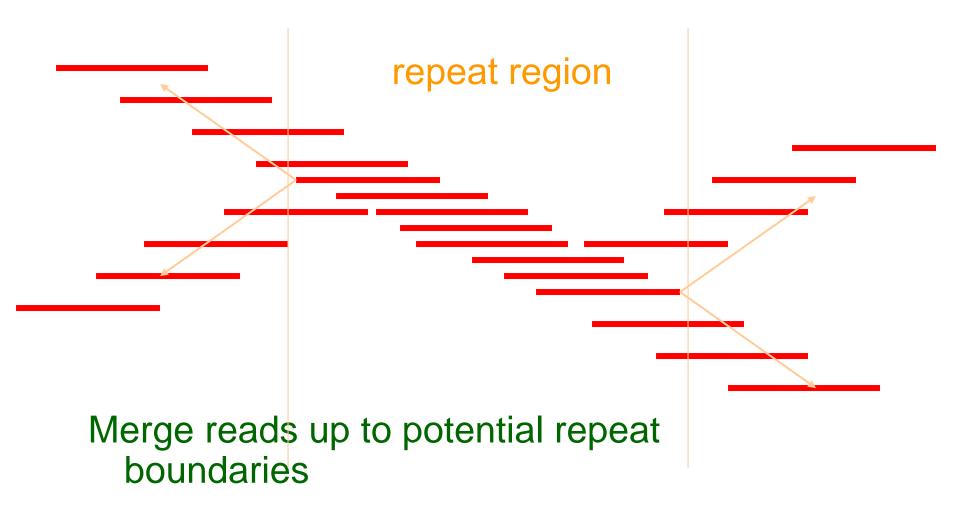
Finding Overlapping Reads

Create local multiple alignments from the overlapping reads

Layout

- Repeats are a major challenge
- Do two aligned fragments really overlap, or are they from two copies of a repeat?
- Solution: repeat masking hide the repeats!!!
- Masking results in high rate of misassembly (up to 20%)
- Misassembly means a lot more work at the finishing step

Merge Reads into Contigs

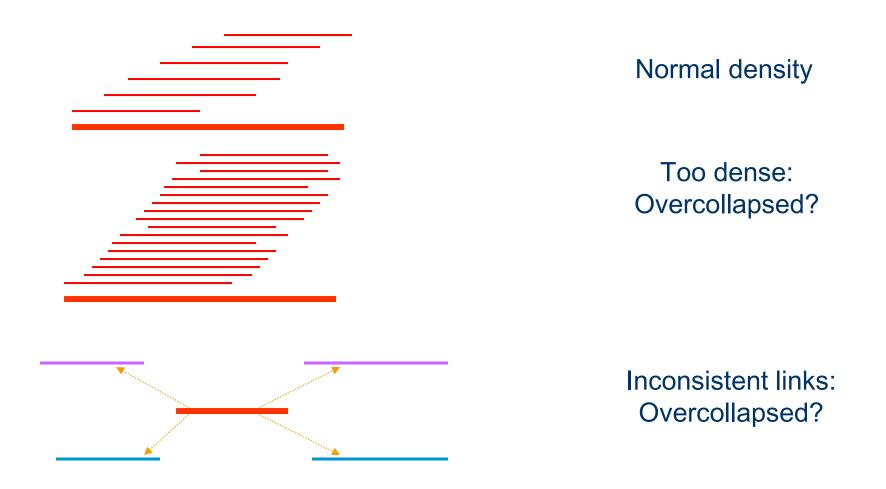


Repeats, Errors, and Contig Lengths

- Repeats shorter than read length are OK
- Repeats with more base pair differencess than sequencing error rate are OK

- To make a smaller portion of the genome appear repetitive, try to:
 - Increase read length
 - Decrease sequencing error rate

Link Contigs into Supercontigs



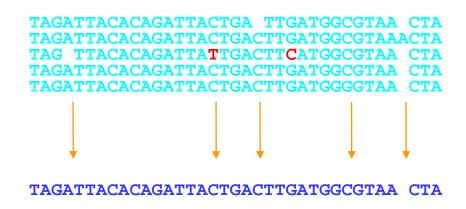
Consensus

 A consensus sequence is derived from a profile of the assembled fragments

 A sufficient number of reads is required to ensure a statistically significant consensus

Reading errors are corrected

Derive Consensus Sequence



Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

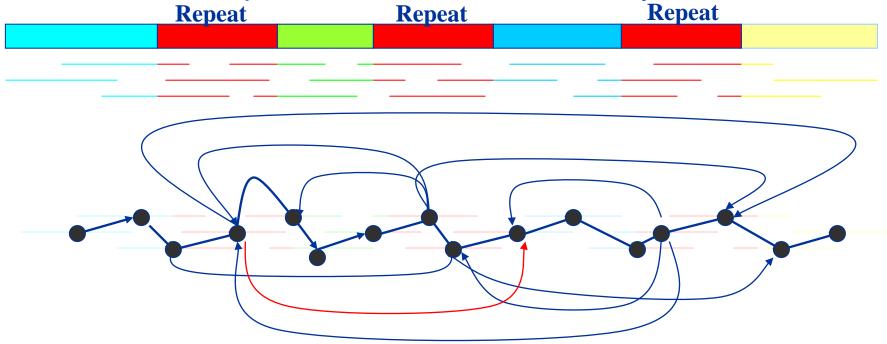
EULER - A New Approach to Fragment Assembly

- Traditional "overlap-layout-consensus" technique has a high rate of mis-assembly
- EULER uses the Eulerian Path approach borrowed from the SBH problem

 Fragment assembly without repeat masking can be done in linear time with greater accuracy

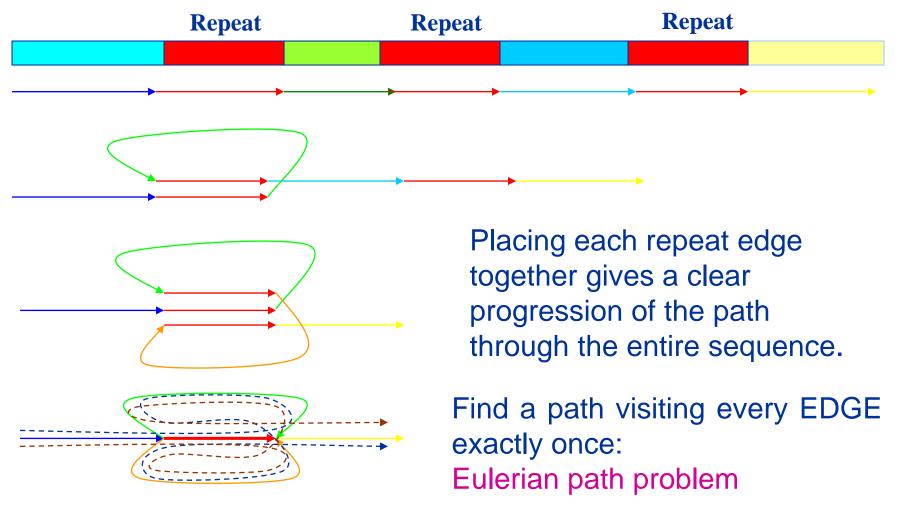
Overlap Graph: Hamiltonian Approach

Each vertex represents a read from the original sequence. Vertices from repeats are connected to many others.

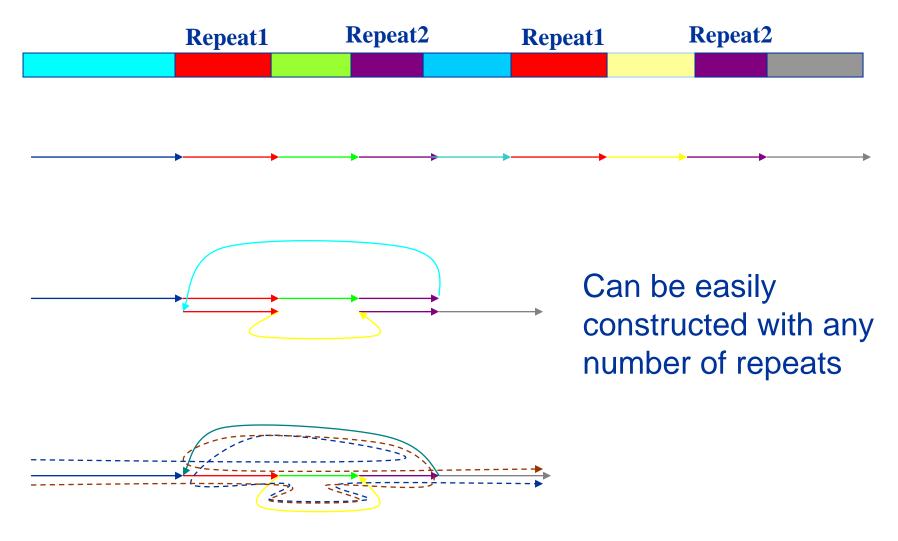


Find a path visiting every VERTEX exactly once: Hamiltonian path problem

Overlap Graph: Eulerian Approach



Multiple Repeats



Construction of Repeat Graph

Construction of repeat graph from k –
mers: emulates an SBH experiment with
a huge (virtual) DNA chip.

 Breaking reads into k – mers: Transform sequencing data into virtual DNA chip data.

Construction of Repeat Graph (cont'd)

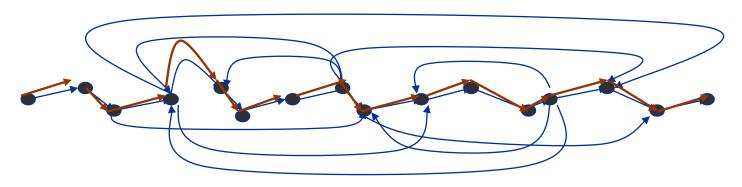
 Error correction in reads: "consensus first" approach to fragment assembly. Makes reads (almost) error-free BEFORE the assembly even starts.

 Using reads and mate-pairs to simplify the repeat graph (Eulerian Superpath Problem).

Approaches to Fragment Assembly

Find a path visiting every VERTEX exactly once in the OVERLAP graph:

Hamiltonian path problem

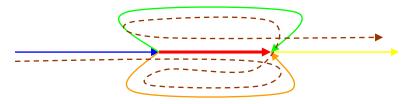


NP-complete: algorithms unknown

Approaches to Fragment Assembly (cont'd)

Find a path visiting every EDGE exactly once in the REPEAT graph:

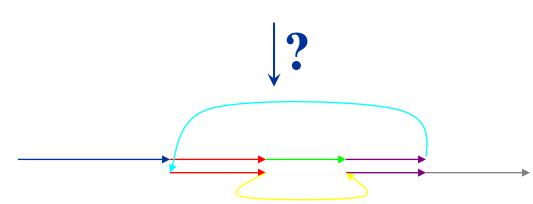
Eulerian path problem



Linear time algorithms are known

Making Repeat Graph Without DNA

 Problem: Construct the repeat graph from a collection of reads.



Solution: Break the reads into smaller pieces.

Repeat Sequences: Emulating a DNA Chip

 Virtual DNA chip allows the biological problem to be solved within the technological constraints.

Repeat Sequences: Emulating a DNA Chip (cont'd)

 Reads are constructed from an original sequence in lengths that allow biologists a high level of certainty.

 They are then broken again to allow the technology to sequence each within a reasonable array.

Minimizing Errors

• If an error exists in one of the 20-mer reads, the error will be perpetuated among all of the smaller pieces broken from that read.

Minimizing Errors (cont'd)

 However, that error will not be present in the other instances of the 20-mer read.

 So it is possible to eliminate most point mutation errors before reconstructing the original sequence.

Conclusions

 Graph theory is a vital tool for solving biological problems

 Wide range of applications, including sequencing, motif finding, protein networks, and many more