
10/25/2018 EECS 4425, Fall 2018 1

EECS 4425:
Introductory Computational Bioinformatics

Fall 2018

Suprakash Datta
datta [at] cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/4425
Many of the slides are taken from www.bioalgorithms.info

http://www.cse.yorku.ca/course/4425

10/25/2018 EECS 4425, Fall 2018 2

Next
Phylogenetic trees

Some of the following slides are based on slides by the
authors of our text.

10/25/2018 EECS 4425, Fall 2018 3

Evolution and DNA Analysis:
the Giant Panda Riddle

• For roughly 100 years scientists were unable to
figure out which family the giant panda belongs to

• Giant pandas look like bears but have features
that are unusual for bears and typical for
raccoons, e.g., they do not hibernate

• In 1985, Steven O’Brien and colleagues solved
the giant panda classification problem using DNA
sequences and algorithms

10/25/2018 EECS 4425, Fall 2018 4

Evolutionary Tree of Bears and Raccoons

10/25/2018 EECS 4425, Fall 2018 5

Evolutionary Trees: DNA-based Approach

• 40 years ago: Emile Zuckerkandl and Linus
Pauling brought reconstructing evolutionary
relationships with DNA into the spotlight

• In the first few years after Zuckerkandl and
Pauling proposed using DNA for evolutionary
studies, the possibility of reconstructing
evolutionary trees by DNA analysis was hotly
debated

• Now it is a dominant approach to study
evolution.

10/25/2018 EECS 4425, Fall 2018 6

Who are closer?

10/25/2018 EECS 4425, Fall 2018 7

Human-Chimpanzee Split?

10/25/2018 EECS 4425, Fall 2018 8

Chimpanzee-Gorilla Split?

10/25/2018 EECS 4425, Fall 2018 9

Three-way Split?

10/25/2018 EECS 4425, Fall 2018 10

Out of Africa Hypothesis
• Around the time the giant panda riddle

was solved, a DNA-based
reconstruction of the human
evolutionary tree led to the Out of
Africa Hypothesis that claims our
most ancient ancestor lived in
Africa roughly 200,000 years ago

10/25/2018 EECS 4425, Fall 2018 11

Human Evolutionary Tree (cont’d)

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm

10/25/2018 EECS 4425, Fall 2018 12

The Origin of Humans:
”Out of Africa” vs Multiregional Hypothesis

Out of Africa:
– Humans evolved in

Africa ~150,000
years ago

– Humans migrated
out of Africa,
replacing other
humanoids around
the globe

– There is no direct
descendance from
Neanderthals

Multiregional:
– Humans evolved in the last

two million years as a single
species. Independent
appearance of modern traits in
different areas

– Humans migrated out of Africa
mixing with other humanoids
on the way

– There is a genetic continuity
from Neanderthals to humans

10/25/2018 EECS 4425, Fall 2018 13

mtDNA analysis supports
“Out of Africa” Hypothesis

• African origin of humans inferred from:
– African population was the most diverse

(sub-populations had more time to
diverge)

– The evolutionary tree separated one
group of Africans from a group
containing all five populations.

– Tree was rooted on branch between
groups of greatest difference.

10/25/2018 EECS 4425, Fall 2018 14

Evolutionary Trees

How are these trees built from DNA
sequences?

10/25/2018 EECS 4425, Fall 2018 15

Evolutionary Trees

How are these trees built from DNA
sequences?
– leaves represent existing species
– internal vertices represent ancestors
– root represents the oldest evolutionary

ancestor

10/25/2018 EECS 4425, Fall 2018 16

Rooted and Unrooted Trees
In the unrooted tree the position of
the root (“oldest ancestor”) is
unknown. Otherwise, they are like
rooted trees

10/25/2018 EECS 4425, Fall 2018 17

Distances in Trees
• Edges may have weights reflecting:

– Number of mutations on evolutionary path
from one species to another

– Time estimate for evolution of one species
into another

• In a tree T, we often compute
dij(T) - the length of a path between leaves i and j

dij(T) – tree distance between i and j

10/25/2018 EECS 4425, Fall 2018 18

Distance in Trees: example

d1,4 = 12 + 13 + 14 + 17 + 12 = 68

i

j

10/25/2018 EECS 4425, Fall 2018 19

Distance Matrix
• Given n species, we can compute the n x

n distance matrix Dij

• Dij may be defined as the edit distance
between a gene in species i and species j,
where the gene of interest is sequenced
for all n species.

Dij – edit distance between i and j

10/25/2018 EECS 4425, Fall 2018 20

Edit Distance vs. Tree Distance
• Given n species, we can compute the n x

n distance matrix Dij

• Dij may be defined as the edit distance
between a gene in species i and species j,
where the gene of interest is sequenced
for all n species.

Dij – edit distance between i and j
• Note the difference with

dij(T) – tree distance between i and j

10/25/2018 EECS 4425, Fall 2018 21

Fitting Distance Matrix
• Given n species, we can compute the n

x n distance matrix Dij

• Evolution of these genes is described
by a tree that we don’t know.

• We need an algorithm to construct a
tree that best fits the distance matrix Dij

10/25/2018 EECS 4425, Fall 2018 22

Fitting Distance Matrix

• Fitting means Dij = dij(T)

Lengths of path in an (unknown) tree T

Edit distance between species (known)

10/25/2018 EECS 4425, Fall 2018 23

Reconstructing a 3 Leaved
Tree

• Tree reconstruction for any 3x3 matrix is
straightforward

• We have 3 leaves i, j, k and a center vertex c

Observe:
dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk

10/25/2018 EECS 4425, Fall 2018 24

Reconstructing a 3 Leaved Tree
(cont’d)

dic + djc = Dij

+ dic + dkc = Dik

2dic + djc + dkc = Dij + Dik

2dic + Djk = Dij + Dik

dic = (Dij + Dik – Djk)/2
Similarly,

djc = (Dij + Djk – Dik)/2
dkc = (Dki + Dkj – Dij)/2

10/25/2018 EECS 4425, Fall 2018 25

Trees with > 3 Leaves
• A full binary tree with n leaves has 2n-2

edges

• This means fitting a given tree to a
distance matrix D requires solving a
system of “n choose 2” equations with
2n-2 variables

• This is not always possible to solve for n
> 3

10/25/2018 EECS 4425, Fall 2018 26

Additive Distance Matrices

Matrix D is
ADDITIVE if there
exists a tree T with
dij(T) = Dij

NON-ADDITIVE
otherwise

10/25/2018 EECS 4425, Fall 2018 27

Distance Based Phylogeny Problem
• Goal: Reconstruct an evolutionary tree

from a distance matrix
• Input: n x n distance matrix Dij
• Output: weighted tree T with n leaves

fitting D

• If D is additive, this problem has a
solution and there is a simple algorithm
to solve it

10/25/2018 EECS 4425, Fall 2018 28

Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with parent k
• Remove the rows and columns of i and j
• Add a new row and column corresponding to k,

where the distance from k to any other leaf m
can be computed as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into
k, iterate algorithm for
rest of tree

10/25/2018 EECS 4425, Fall 2018 29

Finding Neighboring Leaves

• To find neighboring leaves we simply select
a pair of closest leaves.

10/25/2018 EECS 4425, Fall 2018 30

Finding Neighboring Leaves

• To find neighboring leaves we simply select
a pair of closest leaves.

WRONG

10/25/2018 EECS 4425, Fall 2018 31

Finding Neighboring Leaves

• Closest leaves aren’t necessarily neighbors
• i and j are neighbors, but (dij = 13) > (djk =

12)

• Finding a pair of neighboring leaves is
a nontrivial problem!

10/25/2018 EECS 4425, Fall 2018 32

Degenerate Triples

• A degenerate triple is a set of three distinct
elements 1≤i,j,k≤n where Dij + Djk = Dik

• Element j in a degenerate triple i,j,k lies on
the evolutionary path from i to k (or is
attached to this path by an edge of length
0).

10/25/2018 EECS 4425, Fall 2018 33

Looking for Degenerate Triples

• If distance matrix D has a degenerate
triple i,j,k then j can be “removed” from D
thus reducing the size of the problem.

• If distance matrix D does not have a
degenerate triple i,j,k, one can “create” a
degenerative triple in D by shortening all
hanging edges (in the tree).

10/25/2018 EECS 4425, Fall 2018 34

Shortening Hanging Edges to
Produce Degenerate Triples

• Shorten all “hanging” edges (edges that
connect leaves) until a degenerate triple
is found

10/25/2018 EECS 4425, Fall 2018 35

Finding Degenerate Triples
• If there is no degenerate triple, all hanging

edges are reduced by the same amount δ, so
that all pair-wise distances in the matrix are
reduced by 2δ.

• Eventually this process collapses one of the
leaves (when δ = length of shortest hanging
edge), forming a degenerate triple i,j,k and
reducing the size of the distance matrix D.

• The attachment point for j can be recovered
in the reverse transformations by saving Dij
for each collapsed leaf.

10/25/2018 EECS 4425, Fall 2018 36

Reconstructing Trees for Additive Distance Matrices

10/25/2018 EECS 4425, Fall 2018 37

AdditivePhylogeny Algorithm
1. AdditivePhylogeny(D)
2. if D is a 2 x 2 matrix
3. T = tree of a single edge of length

D1,2
4. return T
5. if D is non-degenerate
6. δ = trimming parameter of matrix D
7. for all 1 ≤ i ≠ j ≤ n
8. Dij = Dij - 2δ
9. else
10. δ = 0

10/25/2018 EECS 4425, Fall 2018 38

AdditivePhylogeny (cont’d)
1. Find a triple i, j, k in D such that Dij + Djk = Dik
2. x = Dij
3. Remove jth row and jth column from D
4. T = AdditivePhylogeny(D)
5. Add a new vertex v to T at distance x from i to k
6. Add j back to T by creating an edge (v,j) of

length 0
7. for every leaf l in T
8. if distance from l to v in the tree ≠ Dl,j
9. output “matrix is not additive”
10. return
11. Extend all “hanging” edges by length δ
12. return T

10/25/2018 EECS 4425, Fall 2018 39

The Four Point Condition
• AdditivePhylogeny provides a way to

check if distance matrix D is additive

• An even more efficient additivity
check is the “four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves
in a tree

10/25/2018 EECS 4425, Fall 2018 40

The Four Point Condition (cont’d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3
2 and 3 represent
the same
number: the
length of all
edges + the
middle edge (it is
counted twice)

1 represents a
smaller
number: the
length of all
edges – the
middle edge

10/25/2018 EECS 4425, Fall 2018 41

The Four Point Condition:
Theorem

• The four point condition for the quartet
i,j,k,l is satisfied if two of these sums
are the same, with the third sum smaller
than these first two

• Theorem : An n x n matrix D is additive
if and only if the four point condition
holds for every quartet 1 ≤ i,j,k,l ≤ n

10/25/2018 EECS 4425, Fall 2018 42

Least Squares Distance Phylogeny
Problem

If the distance matrix D is NOT additive, then we look for
a tree T that approximates D the best:

Squared Error : ∑i,j (dij(T) – Dij)2

• Squared Error is a measure of the quality of the fit
between distance matrix and the tree: we want to
minimize it.

• Least Squares Distance Phylogeny Problem:
finding the best approximation tree T for a non-
additive matrix D (NP-hard).

10/25/2018 EECS 4425, Fall 2018 43

UPGMA: Unweighted Pair Group
Method with Arithmetic Mean

UPGMA is a clustering algorithm that:
– computes the distance between clusters

using average pairwise distance
– assigns a height to every vertex in the

tree, effectively assuming the presence
of a molecular clock and dating every
vertex

10/25/2018 EECS 4425, Fall 2018 44

UPGMA’s Weakness
• The algorithm produces an ultrametric

tree : the distance from the root to any
leaf is the same

• UPGMA assumes a constant molecular
clock: all species represented by the
leaves in the tree are assumed to
accumulate mutations (and thus evolve)
at the same rate. This is a major pitfall of
UPGMA.

10/25/2018 EECS 4425, Fall 2018 45

UPGMA’s Weakness: Example

2

3

4
1 1 4 32

Correct tree
UPGMA

10/25/2018 EECS 4425, Fall 2018 46

Clustering in UPGMA
Given two disjoint clusters Ci, Cj of sequences,

1
dij = ––––––––– Σ{p ∈Ci, q ∈Cj}dpq

|Ci| × |Cj|

Note that if Ck = Ci ∪ Cj, then distance to another
cluster Cl is:

dil |Ci| + djl |Cj|
dkl = ––––––––––––––

|Ci| + |Cj|

10/25/2018 EECS 4425, Fall 2018 47

UPGMA Algorithm
Initialization:

Assign each xi to its own cluster Ci
Define one leaf per sequence, each at height 0

Iteration:
Find two clusters Ci and Cj such that dij is min
Let Ck = Ci ∪ Cj
Add a vertex connecting Ci, Cj and place it at
height dij /2
Delete Ci and Cj

Termination:
When a single cluster remains

10/25/2018 EECS 4425, Fall 2018 48

UPGMA Algorithm (cont’d)

1 4

3 2 5

1 4 2 3 5

10/25/2018 EECS 4425, Fall 2018 49

Alignment Matrix vs. Distance Matrix
Sequence a gene of length m

nucleotides in n species to generate an…
n x m alignment matrix

n x n distance
matrix

CANNOT be
transformed back
into alignment
matrix because
information was
lost on the forward
transformation

Transform
into…

10/25/2018 EECS 4425, Fall 2018 50

Character-Based Tree Reconstruction

• Better technique:
– Character-based reconstruction algorithms

use the n x m alignment matrix
(n = # species, m = #characters)
directly instead of using distance matrix.

– GOAL: determine what character strings at
internal nodes would best explain the character
strings for the n observed species

10/25/2018 EECS 4425, Fall 2018 51

Character-Based Tree Reconstruction
(cont’d)

• Characters may be nucleotides, where
A, G, C, T are states of this character.
Other characters may be the # of eyes
or legs or the shape of a beak or a fin.

• By setting the length of an edge in the
tree to the Hamming distance, we may
define the parsimony score of the tree
as the sum of the lengths (weights) of
the edges

10/25/2018 EECS 4425, Fall 2018 52

Parsimony Approach to
Evolutionary Tree Reconstruction

• Applies Occam’s razor principle to identify
the simplest explanation for the data

• Assumes observed character differences
resulted from the fewest possible
mutations

• Seeks the tree that yields lowest possible
parsimony score - sum of cost of all
mutations found in the tree

10/25/2018 EECS 4425, Fall 2018 53

Parsimony and Tree
Reconstruction

10/25/2018 EECS 4425, Fall 2018 54

Small Parsimony Problem
• Input: Tree T with each leaf labeled by an m-

character string.

• Output: Labeling of internal vertices of the
tree T minimizing the parsimony score.

• We can assume that every leaf is labeled by
a single character, because the characters in
the string are independent.

10/25/2018 EECS 4425, Fall 2018 55

Weighted Small Parsimony Problem

• A more general version of Small
Parsimony Problem

• Input includes a k * k scoring matrix
describing the cost of transformation of
each of k states into another one

• For Small Parsimony problem, the scoring
matrix is based on Hamming distance

dH(v, w) = 0 if v=w
dH(v, w) = 1 otherwise

10/25/2018 EECS 4425, Fall 2018 56

Scoring Matrices

A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem

10/25/2018 EECS 4425, Fall 2018 57

Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

Small Parsimony Score:5

10/25/2018 EECS 4425, Fall 2018 58

Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

Weighted Parsimony Score: 22

10/25/2018 EECS 4425, Fall 2018 59

Weighted Small Parsimony
Problem: Formulation

• Input: Tree T with each leaf labeled by
elements of a k-letter alphabet and a k x k
scoring matrix (δij)

• Output: Labeling of internal vertices of the
tree T minimizing the weighted parsimony
score

10/25/2018 EECS 4425, Fall 2018 60

Sankoff’s Algorithm
• Check children’s

every vertex and
determine the
minimum between
them

• An example

10/25/2018 EECS 4425, Fall 2018 61

Sankoff Algorithm: Dynamic
Programming

• Calculate and keep track of a score for
every possible label at each vertex
– st(v) = minimum parsimony score of the

subtree rooted at vertex v if v has character t
• The score at each vertex is based on

scores of its children:
– st(parent) = mini {si(left child) + δi, t} +

minj {sj(right child) + δj, t}

10/25/2018 EECS 4425, Fall 2018 62

Sankoff Algorithm (cont.)
• Begin at leaves:

– If leaf has the character in question, score
is 0

– Else, score is ∞

10/25/2018 EECS 4425, Fall 2018 63

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + δi, t} +
minj{sj(w) + δj, t}

sA(v) = mini{si(u) + δi, A}
+ minj{sj(w) + δj, A}

si(u
) δi, A

su
m

A 0 0 0

T ∞ 3 ∞

G ∞ 4 ∞

C ∞ 9 ∞

si(u
) δi, A

su
m

A 0 0 0

T ∞ 3 ∞

G ∞ 4 ∞

C ∞ 9 ∞

sA(v) = 0

si(u
) δi, A

su
m

A

T

G

C

10/25/2018 EECS 4425, Fall 2018 64

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + δi, t} +
minj{sj(w) + δj, t}

sA(v) = mini{si(u) + δi, A}
+ minj{sj(w) + δj, A}

sj(u
) δj, A

su
m

A

T

G

C

sj(u
) δj, A

su
m

A ∞ 0 ∞

T ∞ 3 ∞

G ∞ 4 ∞

C 0 9 9

sj(u
) δj, A

su
m

A ∞ 0 ∞

T ∞ 3 ∞

G ∞ 4 ∞

C 0 9 9

+ 9 = 9
sA(v) = 0

10/25/2018 EECS 4425, Fall 2018 65

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + δi, t} +
minj{sj(w) + δj, t}

Repeat for T, G, and C

10/25/2018 EECS 4425, Fall 2018 66

Sankoff Algorithm (cont.)

Repeat for right subtree

10/25/2018 EECS 4425, Fall 2018 67

Sankoff Algorithm (cont.)

Repeat for root

10/25/2018 EECS 4425, Fall 2018 68

Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted
parsimony score In this case, 9 –

so label with T

10/25/2018 EECS 4425, Fall 2018 69

Sankoff Algorithm: Traveling down
the Tree

• The scores at the root vertex have been
computed by going up the tree

• After the scores at root vertex are
computed the Sankoff algorithm moves
down the tree and assign each vertex with
optimal character.

10/25/2018 EECS 4425, Fall 2018 70

Sankoff Algorithm (cont.)

9 is derived from 7 + 2

So left child is T,

And right child is T

10/25/2018 EECS 4425, Fall 2018 71

Sankoff Algorithm (cont.)

And the tree is thus labeled…

10/25/2018 EECS 4425, Fall 2018 72

Fitch’s Algorithm
• Solves Small Parsimony problem
• Dynamic programming in essence
• Assigns a set of letter to every vertex in

the tree.
• If the two children’s sets of character

overlap, it’s the intersection of them
• If not, it’s the union of them.

10/25/2018 EECS 4425, Fall 2018 73

Fitch’s Algorithm (cont’d)

a

a

a

a

a

a

c

c

{t,a}

c

t

t

t

{t,a}

a

{a,c}

{a,c}
a

a

a

aa

tc

An example:

10/25/2018 EECS 4425, Fall 2018 74

Fitch Algorithm
1) Assign a set of possible letters to

every vertex, traversing the tree from
leaves to root

• Each node’s set is the intersection or
union of its children’s sets (leaves
contain their label)
– E.g. if the node we are looking at has a left

child labeled {A, C} and a right child
labeled {A, T}, the node will be given the
set {T}

10/25/2018 EECS 4425, Fall 2018 75

Fitch Algorithm (cont.)
2) Assign labels to each vertex,

traversing the tree from root to leaves
• Assign root arbitrarily from its set of

letters
• For all other vertices, if its parent’s label

is in its set of letters, assign it its
parent’s label

• Else, choose an arbitrary letter from its
set as its label

10/25/2018 EECS 4425, Fall 2018 76

Fitch Algorithm (cont.)

10/25/2018 EECS 4425, Fall 2018 77

Fitch vs. Sankoff
• Both have an O(nk) runtime

• Are they actually different?

• Let’s compare …

10/25/2018 EECS 4425, Fall 2018 78

Fitch

As seen previously:

10/25/2018 EECS 4425, Fall 2018 79

Comparison of Fitch and
Sankoff

• As seen earlier, the scoring matrix for the
Fitch algorithm is merely:

• So let’s do the same problem using Sankoff
algorithm and this scoring matrix

A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

10/25/2018 EECS 4425, Fall 2018 80

Sankoff

10/25/2018 EECS 4425, Fall 2018 81

Sankoff vs. Fitch
• The Sankoff algorithm gives the same set of

optimal labels as the Fitch algorithm
• For Sankoff algorithm, character t is optimal

for vertex v if st(v) = min1<i<ksi(v)
– Denote the set of optimal letters at vertex v as

S(v)
• If S(left child) and S(right child) overlap,

S(parent) is the intersection
• Else it’s the union of S(left child) and S(right

child)
• This is also the Fitch recurrence

• The two algorithms are identical

10/25/2018 EECS 4425, Fall 2018 82

Large Parsimony Problem
• Input: An n x m matrix M describing n

species, each represented by an m-
character string

• Output: A tree T with n leaves labeled
by the n rows of matrix M, and a
labeling of the internal vertices such that
the parsimony score is minimized over
all possible trees and all possible
labelings of internal vertices

10/25/2018 EECS 4425, Fall 2018 83

Large Parsimony Problem (cont.)
• Possible search space is huge,

especially as n increases
– Exponential number of possible rooted

trees, and possible unrooted trees
• Problem is NP-complete

– Exhaustive search only possible w/ small
n(< 10)

• Hence, branch and bound or heuristics
used

10/25/2018 EECS 4425, Fall 2018 84

Nearest Neighbor Interchange
A Greedy Algorithm

• A Branch Swapping algorithm
• Only evaluates a subset of all possible

trees
• Defines a neighbor of a tree as one

reachable by a nearest neighbor
interchange
– A rearrangement of the four subtrees

defined by one internal edge
– Only three different rearrangements per

edge

10/25/2018 EECS 4425, Fall 2018 85

Nearest Neighbor Interchange
(cont.)

10/25/2018 EECS 4425, Fall 2018 86

Nearest Neighbor Interchange
(cont.)

• Start with an arbitrary tree and check its
neighbors

• Move to a neighbor if it provides the best
improvement in parsimony score

• No way of knowing if the result is the most
parsimonious tree

• Could be stuck in local optimum

10/25/2018 EECS 4425, Fall 2018 87

Nearest Neighbor Interchange

10/25/2018 EECS 4425, Fall 2018 88

Subtree Pruning and Regrafting
Another Branch Swapping Algorithm

http://artedi.ebc.uu.se/course/BioInfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif

10/25/2018 EECS 4425, Fall 2018 89

Tree Bisection and Reconnection
Another Branch Swapping Algorithm

Most extensive
swapping routine

10/25/2018 EECS 4425, Fall 2018 90

Homoplasy
• Given:

– 1: CAGCAGCAG
– 2: CAGCAGCAG
– 3: CAGCAGCAGCAG
– 4: CAGCAGCAG
– 5: CAGCAGCAG
– 6: CAGCAGCAG
– 7: CAGCAGCAGCAG

• Most would group 1, 2, 4, 5, and 6 as having
evolved from a common ancestor, with a
single mutation leading to the presence of 3
and 7

10/25/2018 EECS 4425, Fall 2018 91

Homoplasy
• But what if this was the real tree?

10/25/2018 EECS 4425, Fall 2018 92

Homoplasy
• 6 evolved separately from 4 and 5, but

parsimony would group 4, 5, and 6
together as having evolved from a
common ancestor

• Homoplasy: Independent (or parallel)
evolution of same/similar characters

• Parsimony results minimize homoplasy,
so if homoplasy is common, parsimony
may give wrong results

10/25/2018 EECS 4425, Fall 2018 93

Contradicting Characters
• An evolutionary tree is more likely to be

correct when it is supported by multiple
characters, as seen below

Lizard

Frog

Human

Dog

MAMMALIA
Hair
Single bone in lower jaw
Lactation
etc.

 Note: In this case, tails are homoplasic

10/25/2018 EECS 4425, Fall 2018 94

Problems with Parsimony
• Important to keep in mind that reliance

on purely one method for phylogenetic
analysis provides incomplete picture

• When different methods (parsimony,
distance-based, etc.) all give same
result, more likely that the result is
correct

10/25/2018 EECS 4425, Fall 2018 95

Phylogenetic Analysis of HIV Virus
• Lafayette, Louisiana, 1994 – A woman

claimed her ex-lover (who was a
physician) injected her with HIV+ blood

• Records show the physician had drawn
blood from an HIV+ patient that day

• But how to prove the blood from that
HIV+ patient ended up in the woman?

10/25/2018 EECS 4425, Fall 2018 96

HIV Transmission
• HIV has a high mutation rate, which can

be used to trace paths of transmission
• Two people who got the virus from two

different people will have very different
HIV sequences

• Three different tree reconstruction
methods (including parsimony) were
used to track changes in two genes in
HIV (gp120 and RT)

10/25/2018 EECS 4425, Fall 2018 97

HIV Transmission
• Took multiple samples from the patient, the

woman, and controls (non-related HIV+
people)

• In every reconstruction, the woman’s
sequences were found to be evolved from the
patient’s sequences, indicating a close
relationship between the two

• Nesting of the victim’s sequences within the
patient sequence indicated the direction of
transmission was from patient to victim

• This was the first time phylogenetic analysis
was used in a court case as evidence
(Metzker, et. al., 2002)

	EECS 4425:�Introductory Computational Bioinformatics �Fall 2018
	Next
	Evolution and DNA Analysis: �the Giant Panda Riddle
	Evolutionary Tree of Bears and Raccoons
	Evolutionary Trees: DNA-based Approach
	Who are closer?
	Human-Chimpanzee Split?
	Chimpanzee-Gorilla Split?
	Three-way Split?
	Out of Africa Hypothesis
	Human Evolutionary Tree (cont’d)
	The Origin of Humans:� ”Out of Africa” vs Multiregional Hypothesis
	mtDNA analysis supports �“Out of Africa” Hypothesis
	Evolutionary Trees
	Evolutionary Trees
	Rooted and Unrooted Trees
	Distances in Trees
	Distance in Trees: example
	Distance Matrix
	Edit Distance vs. Tree Distance
	Fitting Distance Matrix
	Fitting Distance Matrix
	Reconstructing a 3 Leaved Tree
	Reconstructing a 3 Leaved Tree (cont’d)
	Trees with > 3 Leaves
	Additive Distance Matrices
	Distance Based Phylogeny Problem
	Using Neighboring Leaves to Construct the Tree
	Finding Neighboring Leaves
	Finding Neighboring Leaves
	Finding Neighboring Leaves
	Degenerate Triples
	Looking for Degenerate Triples
	Shortening Hanging Edges to Produce Degenerate Triples
	Finding Degenerate Triples
	Reconstructing Trees for Additive Distance Matrices
	AdditivePhylogeny Algorithm
	AdditivePhylogeny (cont’d)
	The Four Point Condition
	The Four Point Condition (cont’d)
	The Four Point Condition: Theorem
	Least Squares Distance Phylogeny Problem
	UPGMA: Unweighted Pair Group Method with Arithmetic Mean
	UPGMA’s Weakness
	UPGMA’s Weakness: Example
	Clustering in UPGMA
	UPGMA Algorithm
	UPGMA Algorithm (cont’d)
	Alignment Matrix vs. Distance Matrix
	Character-Based Tree Reconstruction
	Character-Based Tree Reconstruction (cont’d)
	Parsimony Approach to Evolutionary Tree Reconstruction
	Parsimony and Tree Reconstruction
	Small Parsimony Problem
	Weighted Small Parsimony Problem
	Scoring Matrices
	Unweighted vs. Weighted
	Unweighted vs. Weighted
	Weighted Small Parsimony Problem: Formulation
	Sankoff’s Algorithm
	Sankoff Algorithm: Dynamic Programming
	Sankoff Algorithm (cont.)
	Sankoff Algorithm (cont.)
	Sankoff Algorithm (cont.)
	Sankoff Algorithm (cont.)
	Sankoff Algorithm (cont.)
	Sankoff Algorithm (cont.)
	Sankoff Algorithm (cont.)
	Sankoff Algorithm: Traveling down the Tree
	Sankoff Algorithm (cont.)
	Sankoff Algorithm (cont.)
	Fitch’s Algorithm
	Fitch’s Algorithm (cont’d)
	Fitch Algorithm
	Fitch Algorithm (cont.)
	Fitch Algorithm (cont.)
	Fitch vs. Sankoff
	Fitch
	Comparison of Fitch and Sankoff
	Sankoff
	Sankoff vs. Fitch
	Large Parsimony Problem
	Large Parsimony Problem (cont.)
	Nearest Neighbor Interchange�A Greedy Algorithm
	Nearest Neighbor Interchange (cont.)
	Nearest Neighbor Interchange (cont.)
	Nearest Neighbor Interchange
	Subtree Pruning and Regrafting�Another Branch Swapping Algorithm
	Tree Bisection and Reconnection �Another Branch Swapping Algorithm
	Homoplasy
	Homoplasy
	Homoplasy
	Contradicting Characters
	Problems with Parsimony
	Phylogenetic Analysis of HIV Virus
	HIV Transmission
	HIV Transmission

