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Next
Phylogenetic trees

Some of the following slides are based on slides by the 
authors of our text.
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Evolution and DNA Analysis: 
the Giant Panda Riddle

• For roughly 100 years scientists were unable to 
figure out which family the giant panda belongs to

• Giant pandas look like bears but have features 
that are unusual for bears and typical for 
raccoons, e.g., they do not hibernate

• In 1985, Steven O’Brien and colleagues solved 
the giant panda classification problem using DNA 
sequences and algorithms
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Evolutionary Tree of Bears and Raccoons
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Evolutionary Trees: DNA-based Approach

• 40 years ago: Emile Zuckerkandl and Linus 
Pauling brought reconstructing evolutionary 
relationships with DNA into the spotlight 

• In the first few years after Zuckerkandl and 
Pauling proposed using DNA for evolutionary 
studies, the possibility of reconstructing 
evolutionary trees by DNA analysis was hotly 
debated

• Now it is a dominant approach to study 
evolution. 
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Who are closer? 
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Human-Chimpanzee Split?
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Chimpanzee-Gorilla Split?  
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Three-way Split? 



10/25/2018 EECS 4425, Fall 2018 10

Out of Africa Hypothesis
• Around the time the giant panda riddle 

was solved, a DNA-based 
reconstruction of the human 
evolutionary tree led to the Out of 
Africa Hypothesis that claims our 
most ancient ancestor lived in 
Africa roughly 200,000 years ago
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Human Evolutionary Tree (cont’d)

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm
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The Origin of Humans:
”Out of Africa” vs Multiregional Hypothesis

Out of Africa:
– Humans evolved in 

Africa ~150,000 
years ago

– Humans migrated 
out of Africa, 
replacing other 
humanoids around 
the globe

– There is no direct 
descendance from 
Neanderthals

Multiregional:
– Humans evolved in the last 

two million years as a single 
species. Independent 
appearance of modern traits in 
different areas

– Humans migrated out of Africa 
mixing with other humanoids 
on the way

– There is a genetic continuity 
from Neanderthals to humans
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mtDNA analysis supports 
“Out of Africa” Hypothesis

• African origin of humans inferred from:
– African population was the most diverse        

(sub-populations had more time to 
diverge)

– The evolutionary tree separated one 
group of Africans from a group 
containing all five populations.

– Tree was rooted on branch between 
groups of greatest difference.
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Evolutionary Trees

How are these trees built from DNA 
sequences?
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Evolutionary Trees

How are these trees built from DNA 
sequences?
– leaves represent existing species
– internal vertices represent ancestors
– root represents the oldest evolutionary 

ancestor
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Rooted and Unrooted Trees
In the unrooted tree the position of 
the root (“oldest ancestor”) is 
unknown. Otherwise, they are like 
rooted trees
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Distances in Trees
• Edges may have weights reflecting:

– Number of mutations on evolutionary path 
from one species to another

– Time estimate for evolution of one species 
into another

• In a tree T, we often compute 
dij(T) - the length of a path between leaves i and j 

dij(T) – tree distance between i and j 
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Distance in Trees: example

d1,4 = 12 + 13 + 14 + 17 + 12 = 68

i

j



10/25/2018 EECS 4425, Fall 2018 19

Distance Matrix
• Given n species, we can compute the n x 

n distance matrix Dij

• Dij may be defined as the edit distance 
between a gene in species i and species j, 
where the gene of interest is sequenced 
for all n species.

Dij – edit distance between i and j
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Edit Distance vs. Tree Distance
• Given n species, we can compute the n x 

n distance matrix Dij

• Dij may be defined as the edit distance 
between a gene in species i and species j, 
where the gene of interest is sequenced 
for all n species.

Dij – edit distance between i and j 
• Note the difference with 

dij(T) – tree distance between i and j
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Fitting Distance Matrix
• Given n species, we can compute the n 

x n distance matrix Dij

• Evolution of these genes is described 
by a tree that we don’t know.

• We need an algorithm to construct a 
tree that best fits the distance matrix Dij
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Fitting Distance Matrix

• Fitting means Dij = dij(T)

Lengths of path in an (unknown) tree T

Edit distance between species (known)
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Reconstructing a 3 Leaved 
Tree

• Tree reconstruction for any 3x3 matrix is 
straightforward

• We have 3 leaves i, j, k and a center vertex c

Observe:
dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk
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Reconstructing a 3 Leaved Tree
(cont’d)

dic + djc = Dij

+  dic + dkc = Dik

2dic + djc + dkc = Dij + Dik

2dic +    Djk = Dij + Dik

dic = (Dij + Dik – Djk)/2
Similarly,

djc = (Dij + Djk – Dik)/2
dkc = (Dki + Dkj – Dij)/2
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Trees with > 3 Leaves
• A full binary tree with n leaves has 2n-2 

edges

• This means fitting a given tree to a 
distance matrix D requires solving a 
system of “n choose 2” equations with  
2n-2 variables

• This is not always possible to solve for n
> 3
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Additive Distance Matrices

Matrix D is 
ADDITIVE if there 
exists a tree T with 
dij(T) = Dij

NON-ADDITIVE 
otherwise
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Distance Based Phylogeny Problem
• Goal: Reconstruct an evolutionary tree 

from a distance matrix
• Input: n x n distance matrix Dij
• Output: weighted tree T with n leaves 

fitting D

• If D is additive, this problem has a 
solution and there is a simple algorithm 
to solve it
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Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with parent k
• Remove the rows and columns of i and j
• Add a new row and column corresponding to k, 

where the distance from k to any other leaf m
can be computed as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into 
k, iterate algorithm for 
rest of tree
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Finding Neighboring Leaves

• To find neighboring leaves we simply select 
a pair of closest leaves. 
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Finding Neighboring Leaves

• To find neighboring leaves we simply select 
a pair of closest leaves. 

WRONG
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Finding Neighboring Leaves

• Closest leaves aren’t necessarily neighbors
• i and j are neighbors, but (dij = 13) > (djk = 

12)

• Finding a pair of neighboring leaves is 
a nontrivial problem!
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Degenerate Triples

• A degenerate triple is a set of three distinct 
elements 1≤i,j,k≤n where Dij + Djk = Dik

• Element j in a degenerate triple i,j,k lies on 
the evolutionary path from i to k (or  is  
attached to  this path by an edge of length 
0).
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Looking for Degenerate Triples

• If distance matrix D has a degenerate 
triple i,j,k then j can be “removed” from D 
thus reducing the        size of the problem.

• If distance matrix D does not have a 
degenerate triple i,j,k, one can “create” a 
degenerative triple in D by shortening all 
hanging edges (in the tree). 
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Shortening Hanging Edges to 
Produce Degenerate Triples

• Shorten all “hanging” edges (edges that 
connect leaves) until a degenerate triple 
is found
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Finding Degenerate Triples
• If there is no degenerate triple, all hanging 

edges are reduced by the same amount δ, so 
that all pair-wise distances in the matrix are 
reduced by 2δ.

• Eventually this process collapses one of the 
leaves (when δ = length of shortest hanging 
edge), forming a degenerate triple i,j,k and 
reducing the size of the distance matrix D.

• The attachment point for j can be recovered 
in the reverse transformations by saving Dij
for each collapsed leaf.
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Reconstructing Trees for Additive Distance Matrices
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AdditivePhylogeny Algorithm
1. AdditivePhylogeny(D)
2. if D is a 2 x 2 matrix
3. T = tree of a single edge of length 

D1,2
4. return T
5. if D is non-degenerate
6. δ = trimming parameter of matrix D
7. for all 1 ≤ i ≠ j ≤ n
8. Dij = Dij - 2δ
9. else
10. δ = 0
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AdditivePhylogeny (cont’d)
1. Find a triple i, j, k in D such that Dij + Djk = Dik
2. x = Dij
3. Remove jth row and jth column from D
4. T = AdditivePhylogeny(D)
5. Add a new vertex v to T at distance x from i to k
6. Add j back to T by creating an edge (v,j) of  

length 0
7. for every leaf l in T
8. if distance from l to v in the tree ≠ Dl,j
9. output “matrix is not additive”
10. return
11. Extend all “hanging” edges by length δ
12. return T
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The Four Point Condition
• AdditivePhylogeny provides a way to 

check if distance matrix D is additive

• An even more efficient additivity 
check is the “four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves 
in a tree
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The Four Point Condition (cont’d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3
2 and 3 represent 
the same 
number: the 
length of all 
edges + the 
middle edge (it is 
counted twice)

1 represents a 
smaller 
number: the 
length of all 
edges – the 
middle edge
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The Four Point Condition: 
Theorem

• The four point condition for  the quartet 
i,j,k,l is satisfied if two of these sums 
are the same, with the third sum smaller 
than these first two

• Theorem : An n x n matrix D is additive 
if and only if the four point condition 
holds for every quartet 1 ≤ i,j,k,l ≤ n
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Least Squares Distance Phylogeny 
Problem

If the distance matrix D is NOT additive, then we look for 
a tree T that approximates D the best:

Squared Error :   ∑i,j (dij(T) – Dij)2

• Squared Error is a measure of the quality of the fit 
between distance matrix and the tree: we want to 
minimize it.

• Least Squares Distance Phylogeny Problem: 
finding the best approximation tree T for a non-
additive matrix D (NP-hard).
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UPGMA: Unweighted Pair Group 
Method with Arithmetic Mean

UPGMA is a clustering algorithm that:
– computes the distance between clusters 

using average pairwise distance
– assigns a height to every vertex in the 

tree, effectively assuming the presence 
of a molecular clock and dating every 
vertex
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UPGMA’s Weakness
• The algorithm produces an ultrametric

tree : the distance from the root to any 
leaf is the same

• UPGMA assumes a constant molecular 
clock: all species represented by the 
leaves in the tree are assumed to 
accumulate mutations (and thus evolve) 
at the same rate. This is a major pitfall of 
UPGMA.
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UPGMA’s Weakness: Example

2

3

4
1 1 4 32

Correct tree
UPGMA
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Clustering in UPGMA
Given two disjoint clusters Ci, Cj of sequences,

1
dij = ––––––––– Σ{p ∈Ci, q ∈Cj}dpq

|Ci| × |Cj|

Note that if Ck = Ci ∪ Cj, then distance to another 
cluster Cl is:

dil |Ci| + djl |Cj|
dkl = ––––––––––––––

|Ci| + |Cj|
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UPGMA Algorithm
Initialization:

Assign each xi to its own cluster Ci
Define one leaf per sequence, each at height 0

Iteration:
Find two clusters Ci and Cj such that dij is min
Let Ck = Ci ∪ Cj
Add a vertex connecting Ci, Cj and place it at 
height dij /2
Delete Ci and Cj

Termination:
When a single cluster remains
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UPGMA Algorithm (cont’d)

1 4

3 2 5

1 4 2 3 5
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Alignment Matrix vs. Distance Matrix
Sequence a gene of length m

nucleotides in n species to generate an…
n x m alignment matrix

n x n distance 
matrix

CANNOT be 
transformed back 
into alignment 
matrix because 
information was 
lost on the forward 
transformation

Transform 
into…
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Character-Based Tree Reconstruction

• Better technique:
– Character-based reconstruction algorithms 

use the n x m alignment matrix
(n = # species, m = #characters) 
directly instead of using distance matrix. 

– GOAL: determine what character strings at 
internal nodes would best explain the character 
strings for the n observed species
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Character-Based Tree Reconstruction
(cont’d)

• Characters may be nucleotides, where 
A, G, C, T are states of this character.  
Other characters may be the # of eyes 
or legs or the shape of a beak or a fin. 

• By setting the length of an edge in the 
tree to the Hamming distance, we may 
define the parsimony score of the tree 
as the sum of the lengths (weights) of 
the edges
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Parsimony Approach to 
Evolutionary Tree Reconstruction

• Applies Occam’s razor principle to identify 
the simplest explanation for the data

• Assumes observed character differences 
resulted from the fewest possible 
mutations

• Seeks the tree that yields lowest possible 
parsimony score - sum of cost of all 
mutations found in the tree
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Parsimony and Tree 
Reconstruction 
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Small Parsimony Problem
• Input: Tree T with each leaf labeled by an m-

character string.

• Output: Labeling of internal vertices of the 
tree T minimizing the parsimony score.

• We can assume that every leaf is labeled by 
a single character, because the characters in 
the string are independent.
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Weighted Small Parsimony Problem

• A more general version of Small 
Parsimony Problem

• Input includes a k * k scoring matrix 
describing the cost of transformation of 
each of k states into another one 

• For Small Parsimony problem, the scoring 
matrix is based on Hamming distance 

dH(v, w) = 0 if v=w
dH(v, w) = 1 otherwise
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Scoring Matrices

A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem
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Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

Small Parsimony Score:5
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Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

Weighted Parsimony Score: 22
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Weighted Small Parsimony 
Problem: Formulation

• Input: Tree T with each leaf labeled by 
elements of a k-letter alphabet and a k x k
scoring matrix (δij)

• Output: Labeling of internal vertices of the 
tree T minimizing the weighted parsimony 
score
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Sankoff’s Algorithm
• Check children’s 

every vertex and 
determine the 
minimum between 
them

• An example
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Sankoff Algorithm: Dynamic 
Programming

• Calculate and keep track of a score for 
every possible label at each vertex
– st(v) = minimum parsimony score of the 

subtree rooted at vertex v if v has character t
• The score at each vertex is based on 

scores of its children:
– st(parent) = mini {si( left child )   + δi, t} + 

minj   {sj( right child ) + δj, t}
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Sankoff Algorithm (cont.)
• Begin at leaves:

– If leaf has the character in question, score 
is 0

– Else, score is ∞
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + δi, t} + 
minj{sj(w) + δj, t}

sA(v) = mini{si(u) + δi, A} 
+ minj{sj(w) + δj, A}

si(u
) δi, A

su
m

A 0 0 0

T ∞ 3 ∞

G ∞ 4 ∞

C ∞ 9 ∞

si(u
) δi, A

su
m

A 0 0 0

T ∞ 3 ∞

G ∞ 4 ∞

C ∞ 9 ∞

sA(v) = 0

si(u
) δi, A

su
m

A

T

G

C
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + δi, t} + 
minj{sj(w) + δj, t}

sA(v) = mini{si(u) + δi, A} 
+ minj{sj(w) + δj, A}

sj(u
) δj, A

su
m

A

T

G

C

sj(u
) δj, A

su
m

A ∞ 0 ∞

T ∞ 3 ∞

G ∞ 4 ∞

C 0 9 9

sj(u
) δj, A

su
m

A ∞ 0 ∞

T ∞ 3 ∞

G ∞ 4 ∞

C 0 9 9

+ 9 = 9
sA(v) = 0
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + δi, t} + 
minj{sj(w) + δj, t}

Repeat for T, G, and C
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Sankoff Algorithm (cont.)

Repeat for right subtree
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Sankoff Algorithm (cont.)

Repeat for root
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Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted 
parsimony score In this case, 9 –

so label with T
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Sankoff Algorithm: Traveling down 
the Tree

• The scores at the root vertex have been 
computed by going up the tree 

• After the scores at root vertex are 
computed the Sankoff algorithm moves 
down the tree and assign each vertex with 
optimal character.
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Sankoff Algorithm (cont.)

9 is derived from 7 + 2

So left child is T,

And right child is T
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Sankoff Algorithm (cont.)

And the tree is thus labeled…
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Fitch’s Algorithm
• Solves Small Parsimony problem
• Dynamic programming in essence
• Assigns a set of letter to every vertex in 

the tree.
• If the two children’s sets of character 

overlap, it’s the intersection of them
• If not, it’s the union of them.
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Fitch’s Algorithm (cont’d)

a

a

a

a

a

a

c

c

{t,a}

c

t

t

t

{t,a}

a

{a,c}

{a,c}
a

a

a

aa

tc

An example:
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Fitch Algorithm
1) Assign a set of possible letters to 

every vertex, traversing the tree from 
leaves to root

• Each node’s set is the intersection or 
union of its children’s sets (leaves 
contain their label)
– E.g. if the node we are looking at has a left 

child labeled {A, C} and a right child 
labeled {A, T}, the node will be given the 
set {T}
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Fitch Algorithm (cont.)
2) Assign labels to each vertex, 

traversing the tree from root to leaves
• Assign root arbitrarily from its set of 

letters
• For all other vertices, if its parent’s label 

is in its set of letters, assign it its 
parent’s label

• Else, choose an arbitrary letter from its 
set as its label



10/25/2018 EECS 4425, Fall 2018 76

Fitch Algorithm (cont.)
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Fitch vs. Sankoff
• Both have an O(nk) runtime

• Are they actually different?

• Let’s compare …
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Fitch

As seen previously:
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Comparison of Fitch and 
Sankoff

• As seen earlier, the scoring matrix for the 
Fitch algorithm is merely:

• So let’s do the same problem using Sankoff 
algorithm and this scoring matrix

A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0
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Sankoff
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Sankoff vs. Fitch
• The Sankoff algorithm gives the same set of 

optimal labels as the Fitch algorithm
• For Sankoff algorithm, character t is optimal

for vertex v if st(v) = min1<i<ksi(v)
– Denote the set of optimal letters at vertex  v as 

S(v)
• If S(left child) and S(right child) overlap, 

S(parent) is the intersection
• Else it’s the union of S(left child) and S(right 

child) 
• This is also the Fitch recurrence

• The two algorithms are identical
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Large Parsimony Problem
• Input: An n x m matrix M describing n 

species, each represented by an m-
character string

• Output: A tree T with n leaves labeled 
by the n rows of matrix M, and a 
labeling of the internal vertices such that 
the parsimony score is minimized over 
all possible trees and all possible 
labelings of internal vertices
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Large Parsimony Problem (cont.)
• Possible search space is huge, 

especially as n increases
– Exponential number of possible rooted 

trees, and possible unrooted trees
• Problem is NP-complete

– Exhaustive search only possible w/ small 
n(< 10)

• Hence, branch and bound or heuristics 
used
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Nearest Neighbor Interchange
A Greedy Algorithm

• A Branch Swapping algorithm
• Only evaluates a subset of all possible 

trees
• Defines a neighbor of a tree as one 

reachable by a nearest neighbor 
interchange
– A rearrangement of the four subtrees 

defined by one internal edge
– Only three different rearrangements per 

edge
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Nearest Neighbor Interchange 
(cont.)
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Nearest Neighbor Interchange 
(cont.)

• Start with an arbitrary tree and check its 
neighbors

• Move to a neighbor if it provides the best 
improvement in parsimony score

• No way of knowing if the result is the most
parsimonious tree

• Could be stuck in local optimum
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Nearest Neighbor Interchange
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Subtree Pruning and Regrafting
Another Branch Swapping Algorithm

http://artedi.ebc.uu.se/course/BioInfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif
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Tree Bisection and Reconnection 
Another Branch Swapping Algorithm

Most extensive 
swapping routine
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Homoplasy
• Given:

– 1: CAGCAGCAG
– 2: CAGCAGCAG
– 3: CAGCAGCAGCAG
– 4: CAGCAGCAG
– 5: CAGCAGCAG
– 6: CAGCAGCAG
– 7: CAGCAGCAGCAG

• Most would group 1, 2, 4, 5, and 6 as having 
evolved from a common ancestor, with a 
single mutation leading to the presence of 3 
and 7



10/25/2018 EECS 4425, Fall 2018 91

Homoplasy
• But what if this was the real tree?
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Homoplasy
• 6 evolved separately from 4 and 5, but 

parsimony would group 4, 5, and 6 
together as having evolved from a 
common ancestor

• Homoplasy: Independent (or parallel) 
evolution of same/similar characters

• Parsimony results minimize homoplasy, 
so if homoplasy is common, parsimony 
may give wrong results
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Contradicting Characters
• An evolutionary tree is more likely to be 

correct when it is supported by multiple 
characters, as seen below

Lizard

Frog

Human

Dog

MAMMALIA
Hair
Single bone in lower jaw
Lactation
etc.

 Note: In this case, tails are homoplasic
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Problems with Parsimony
• Important to keep in mind that reliance 

on purely one method for phylogenetic 
analysis provides incomplete picture

• When different methods (parsimony, 
distance-based, etc.) all give same 
result, more likely that the result is 
correct
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Phylogenetic Analysis of HIV Virus
• Lafayette, Louisiana, 1994 – A woman 

claimed her ex-lover (who was a 
physician) injected her with HIV+ blood

• Records show the physician had drawn 
blood from an HIV+ patient that day

• But how to prove the blood from that 
HIV+ patient ended up in the woman?
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HIV Transmission
• HIV has a high mutation rate, which can 

be used to trace paths of transmission
• Two people who got the virus from two 

different people will have very different 
HIV sequences

• Three different tree reconstruction 
methods (including parsimony) were 
used to track changes in two genes in 
HIV (gp120 and RT)
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HIV Transmission
• Took multiple samples from the patient, the 

woman, and controls (non-related HIV+ 
people) 

• In every reconstruction, the woman’s 
sequences were found to be evolved from the 
patient’s sequences, indicating a close 
relationship between the two

• Nesting of the victim’s sequences within  the 
patient sequence indicated the direction of 
transmission was from patient to victim

• This was the first time phylogenetic analysis 
was used in a court case as evidence 
(Metzker, et. al., 2002)
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