EECS 4425:

Introductory Computational Bioinformatics

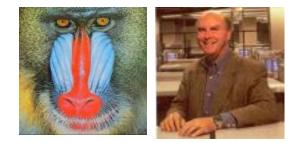
Fall 2018

Suprakash Datta

datta [at] cse.yorku.ca

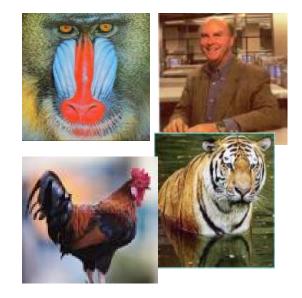
Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: <u>http://www.cse.yorku.ca/course/4425</u> Many of the slides are taken from www.bioalgorithms.info

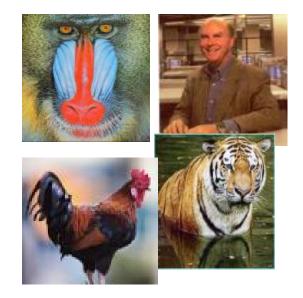

9/27/2018

Next

• Multiple Alignments


Multiple Alignment versus Pairwise Alignment

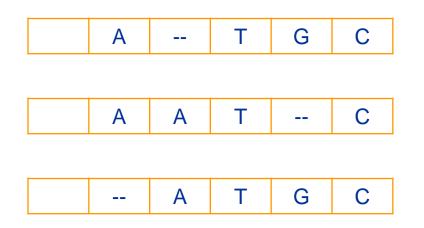
• Up until now we have only tried to align two sequences.


Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal


Generalizing the Notion of Pairwise Alignment

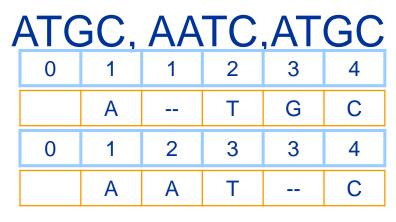
- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

• Score: more conserved columns, better alignment

Alignments = Paths in...

• Align 3 sequences: ATGC, AATC, ATGC

Alignment Paths


A A T -- C

A	Т	G	С
---	---	---	---

x coordinate

Alignment Paths

• Align the following 3 sequences:

x coordinate

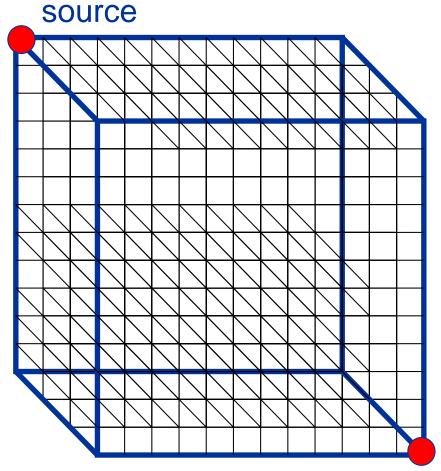
y coordinate

Alignment Paths

0	1	1	2	3	4
	А		Т	G	С
0	1	2	3	3	4
	А	А	Т		С
0	0	1	2	3	4
		А	Т	G	С

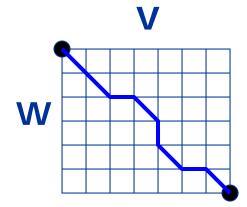
x coordinate

y coordinate


z coordinate

• Resulting path in (*x*,*y*,*z*) space:

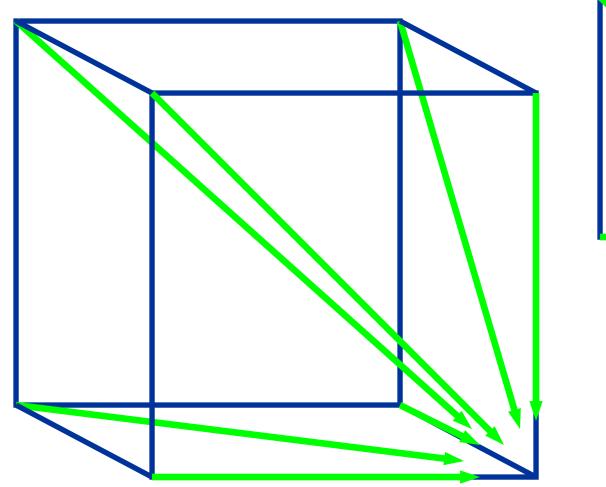
 $(0,0,0) {\rightarrow} (1,1,0) {\rightarrow} (1,2,1) {\rightarrow} (2,3,2) {\rightarrow} (3,3,3) {\rightarrow} (4,4,4)$

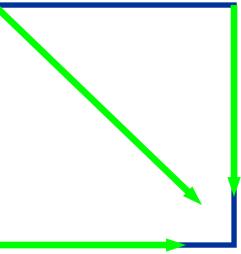

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

sink

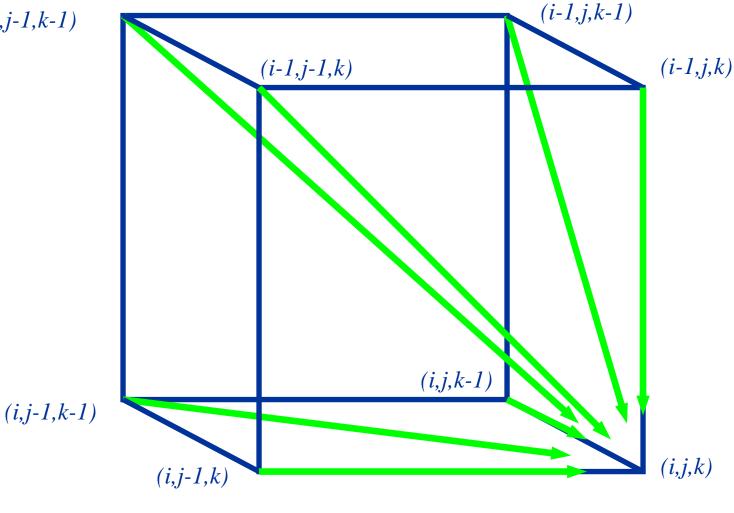
2-D vs 3-D Alignment Grid




2-D edit graph

3-D edit graph

2-D cell versus 2-D Alignment Cell



In **2-D**, 3 edges in each unit square

In **3-D**, 7 edges in each unit cube

Architecture of 3-D Alignment Cell

(*i*-1,*j*-1,*k*-1)

Multiple Alignment: Dynamic Programming

• $S_{i,j,k} = \max \left\{ \begin{array}{c} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_{j-1}) \\ s_{i-1,j,k-1} + \delta(v_i, \dots, u_k) \\ s_{i,j-1,k-1} + \delta(\dots, w_j, u_k) \\ s_{i-1,j,k} + \delta(\dots, w_j, u_k) \\ s_{i,j-1,k} + \delta(\dots, w_j, u_k) \\ s_{i,j-1,k} + \delta(\dots, w_j, u_k) \\ s_{i,j,k-1} + \delta(\dots, w_j, u_k) \\ s_{i,j,k-1} + \delta(\dots, w_j, u_k) \end{array} \right\}$ cube diagonal: no indels

• $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length *n*, the run time is 7*n*³; O(*n*³)
- For k sequences, build a k-dimensional Manhattan, with run time (2^k-1)(n^k); O(2^kn^k)
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to *k* sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

- x: AC-GCGG-C
- y: AC-GC-GAG
- z: GCCGC-GAG

Induces:

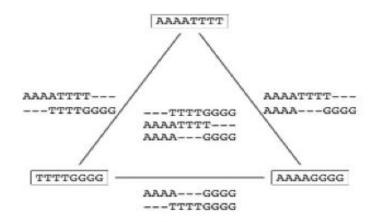
x: ACGCGGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG

EECS 4425, Fall 2018

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

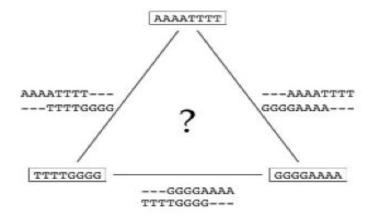
Given 3 arbitrary pairwise alignments:

- x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC--GAC; z: GCCGCA-GAG;
- **z:** GCCGCAGAG
- Q: can we construct a multiple alignment that induces them?
 - A: NOT ALWAYS


Pairwise alignments may be inconsistent 9/27/2018 EECS 4425, Fall 2018

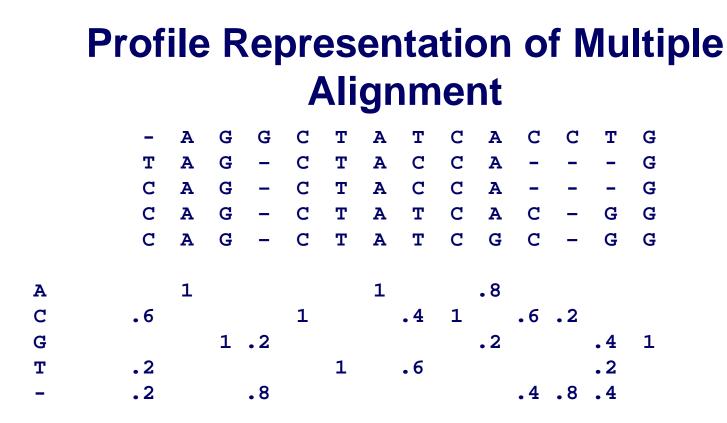
Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a ``good" multiple alignment from optimal pairwise alignments between all sequences


Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

(a) Compatible pairwise alignments


Can *not* combine pairwise alignments into multiple alignment

(b) Incompatible pairwise alignments

9/27/2018

EECS 4425, Fall 2018

In the past we were aligning a **sequence against a sequence**

Can we align a sequence against a profile?

Can we align a profile against a profile?

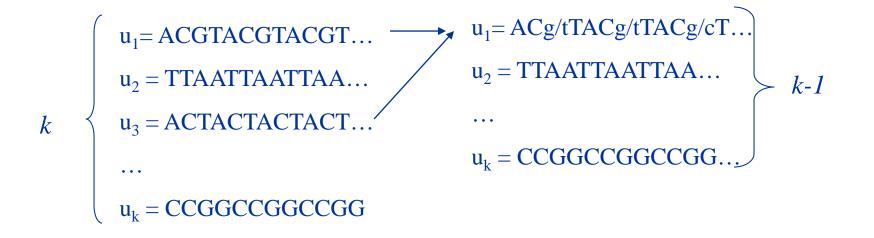
9/27/2018

Aligning alignments

Given two alignments, can we align them?

- **x** GGGCACTGCAT
- y GGTTACGTC-- Alignment 1
- z GGGAACTGCAG

- w GGACGTACC--Alignment 2
- v GGACCT----


Aligning alignments

- Given two alignments, can we align them?
- Hint: use alignment of corresponding profiles

- **x** GGGCACTGCAT
- y GGTTACGTC--
- Combined Alignment
- z GGGAACTGCAG
- w GGACGTACC--
- v GGACCT----

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of of k-1 sequences/profiles. Repeat
- This is a heuristic greedy method

Greedy Approach: Example

Consider these 4 sequences

s1GATTCAs2GTCTGAs3GATATTs4GTCAGC

• There are $\begin{pmatrix} 4 \\ 2 \end{pmatrix} = 6$ possible alignments

- s2GTCTGAs1GATTCA--s4GTCAGC (score = 2)s4G-T-CAGC(score = 0)
- s1 GAT-TCA s2 G-TCTGA
- s2 G-TCTGA (score = 1) s3 GATAT-T (score = -1)
- *s1* GAT-TCA *s3* GAT-ATT
- s3 GATAT-T (score = 1) s4 G-TCAGC (score = -1)

Greedy Approach: Example (cont'd)

 s_2 and s_4 are closest; combine:

 $\begin{array}{ccc} s\mathcal{Z} & \text{GTCTGA} \\ s\mathcal{A} & \text{GTCAGC} \end{array} \right] \begin{array}{c} S_{\mathcal{Z}, \mathcal{A}} \\ \text{(profile)} \end{array} \text{GTCt/aGa/cA}$

new set of 3 sequences:

\boldsymbol{S}_1	GATTCA
$\overline{S_3}$	GATATT
S _{2, 4}	GTCt/aGa/c

Progressive Alignment

- *Progressive alignment* is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences

ClustalW

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build Guide Tree
 - 3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

Step 2: Guide Tree

Create Guide Tree using the similarity matrix

 ClustalW uses the neighbor-joining method

 Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd) \mathbf{v}_1 $\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3 \quad \mathbf{v}_4$ \mathbf{V}_3 \mathbf{v}_1 \mathbf{V}_{4} **v**₂ | .17 - \mathbf{v}_2 **v**₃ .87 .28 **v**₄ .59 .33 .62 -Cal cul ate: $V_{1, 3}$ = alignment (V_1, V_3) $V_{1, 3, 4}$ = alignment $((V_{1, 3}), V_4)$ = alignment (v_1, v_3)

 $V_{1, 2, 3, 4}$ = alignment (($V_{1, 3, 4}$), V_{2})

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment

• Insert gaps as necessary

FOS_RATPEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFDFOS_MOUSEPEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFDFOS_CHICKSEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFDFOSB_MOUSEPGPGPLAEVRDLPG----STSAKEDGFGWLLPPPPPPP------LPFQFOSB_HUMANPGPGPLAEVRDLPG----SAPAKEDGFSWLLPPPPPPP------LPFQ:**:

Dots and stars show how well-conserved a column is.

9/27/2018

EECS 4425, Fall 2018

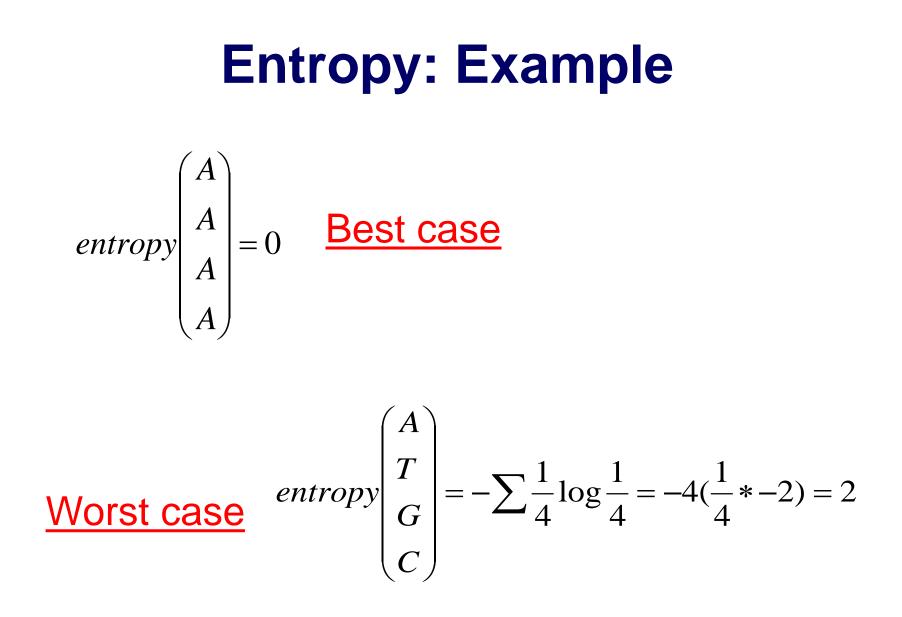
Multiple Alignments: Scoring

• Number of matches (multiple longest common subsequence score)

• Entropy score

• Sum of pairs (SP-Score)

Multiple LCS Score


• A column is a "match" if all the letters in the column are the same

AAA AAA AAT ATC

Only good for very similar sequences

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment
 - $p_A = 1$, $p_T = p_G = p_C = 0$ (1st column)
 - $p_A = 0.75$, $p_T = 0.25$, $p_G = p_C = 0$ (2nd column)
 - $p_A = 0.50$, $p_T = 0.25$, $p_C = 0.25 p_G = 0$ (3rd column)

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:

 $\Sigma_{\text{over all columns}} \Sigma_{X=A,T,G,C} p_X \log p_X$

Entropy of an Alignment: Example

 $\frac{\text{column entropy}}{-(p_A \log p_A + p_C \log p_C + p_C \log p_C + p_T \log p_T)}$

Α	Α	Α
Α	С	С
Α	С	G
Α	С	Т

•Column 2 = -[$(1/_4)*\log(1/_4) + (3/_4)*\log(3/_4) + 0*\log 0 + 0*\log 0$] = -[$(1/_4)*(-2) + (3/_4)*(-.415)$] = +0.811

•Column 3 = -[(¹/₄)*log(¹/₄)+(¹/₄)*log(¹/₄)+(¹/₄)*log(¹/₄)+(¹/₄)*log(¹/₄)] = 4* -[(¹/₄)*(-2)] = +2.0

•Alignment Entropy = 0 + 0.811 + 2.0 = +2.811

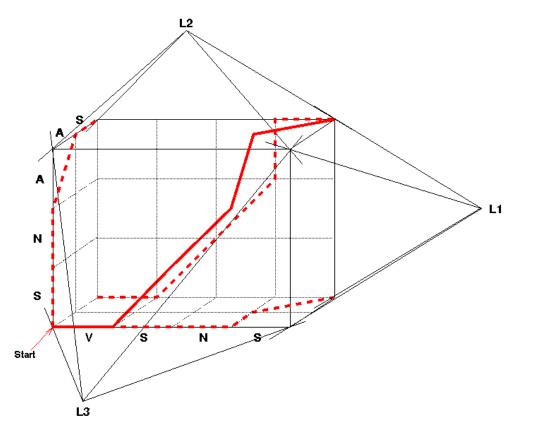
Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

- x: AC-GCGG-C
- y: AC-GC-GAG
- z: GCCGC-GAG

Induces:

x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG


EECS 4425, Fall 2018

Inferring Pairwise Alignments from Multiple Alignments

 From a multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal

 This is like projecting a 3-D multiple alignment path on to a 2-D face of the cube

Multiple Alignment Projections

A 3-D alignment can be projected onto the 2-D plane to represent an alignment between a pair of sequences.

All 3 Pairwise Projections of the Multiple Alignment

Sum of Pairs Score(SP-Score)

Consider pairwise alignment of sequences
 a_i and a_j

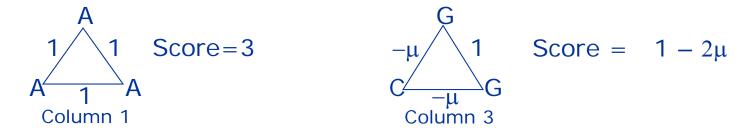
imposed by a multiple alignment of *k* sequences

- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as s*(a_i, a_i)
- Sum up the pairwise scores for a multiple alignment:

$$s(a_1,\ldots,a_k)=\Sigma_{i,j}\,s^*(a_i,\,a_j)$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments


Given a_1, a_2, a_3, a_4 : $s(a_1 \dots a_4) = \Sigma s^*(a_1, a_3) = s^*(a_1, a_2) + s^*(a_1, a_3) + s^*(a_1, a_4) + s^*(a_2, a_3) + s^*(a_2, a_4) + s^*(a_3, a_4)$

SP-Score: Example

*a*₁ ATG-C-AAT
A-G-CATAT *a*_k ATCCCATTT

To calculate each column:

$$s'(a_1...a_k) = \sum_{i,j} s^*(a_i, a_j) \longleftarrow \binom{n}{2}$$
 Pairs of Sequences

EECS 4425, Fall 2018

Multiple Alignment: History

1975 Sankoff

Formulated multiple alignment problem and gave dynamic programming solution

1988 Carrillo-Lipman

Branch and Bound approach for MSA

1990 Feng-Doolittle

Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW

Most popular multiple alignment program 1998 Morgenstern et al.-DIALIGN

Segment-based multiple alignment 2000 Notredame-Higgins-Heringa-T-coffee

Using the library of pairwise alignments **2004 MUSCLE**

What's next?