EECS 4425:

Introductory Computational Bioinformatics

Fall 2018

Suprakash Datta

datta [at] cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: <u>http://www.cse.yorku.ca/course/4425</u> Many of the slides are taken from www.bioalgorithms.info

9/18/2018

Next: sequence alignment Why align?

Scarites	С	Т	Т	A	G	Å	Т	C	G	Т	A	С	С	A	A	-	-	-	A	Å	Т	A	Т	Т	A	С
Carenum	С	т	т	A	G	A	т	C	G	т	А	С	C	A	С	А	-	т	A	С	-	т	т	Т	A	С
Pasimachus	A	т	Т	A	G	A	т	С	G	т	A	С	C	A	С	т	A	т	A	A	G	т	Т	т	A	С
Pheropsophus	С	Т	Т	A	G	A	т	С	G	т	т	С	С	A	С	-	-	-	A	С	A	т	A	т	A	С
Brachinus armiger	A	т	Т	A	G	A	т	С	G	т	A	С	C	A	С	-	-	-	A	т	A	т	A	т	т	С
Brachinus hirsutus	A	т	т	A	G	A	т	С	G	т	A	С	C	A	С	-	-	-	A	т	Å	т	A	т	A	С
Aptinus	С	Т	Т	A	G	A	т	С	G	Т	A	С	C	A	С	-	-	_	A	С	A	A	т	Т	A	С
Pseudomorpha	С	Т	Т	A	G	A	Т	C	G	Т	A	С	С	-	-	-	-	-	A	С	Å	A	A	Т	A	С

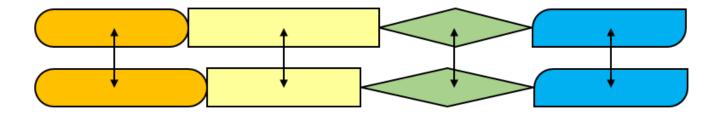
Picture from http://www.sequence-alignment.com/

9/18/2018

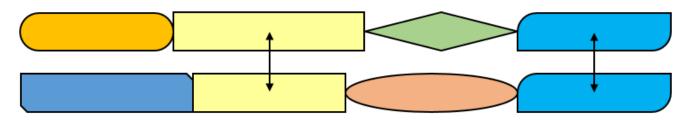
EECS 4425, Fall 2018

Local vs Global Alignment

Picture from Wikipedia (By Yz cs5160 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=54415549)



Global Alignment



Local Alignment

Dynamic programming (DP)

- <u>Typically</u> used for optimization problems
- Often results in efficient algorithms
- Not applicable to all problems

Caveats:

- Need not yield poly-time algorithms
- No unique formulations for most problems
- May not rule out greedy algorithms

Example

- Counting the number of shortest paths in a grid
- Counting the number of shortest paths in a grid with blocked intersections

• Finding paths in a weighted grid

• Sequence alignment

Setting up DP in practice

- The optimal solution should be computable as a (recursive) function of the solution to sub-problems
- Solve sub-problems systematically and store solutions (to avoid duplication of work).

Number of paths in a grid

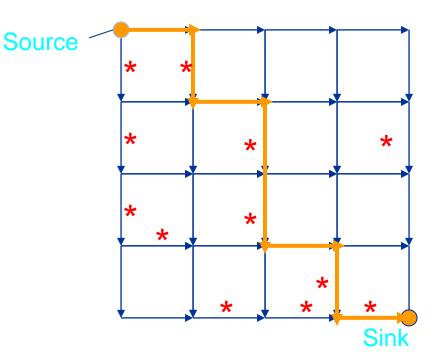
- Combinatorial approach
- DP approach: how can we decompose the problem into sub-problems ?

Number of paths in a grid with blocked intersections

- Combinatorial approach?
- DP approach: how can we decompose the problem into sub-problems ?

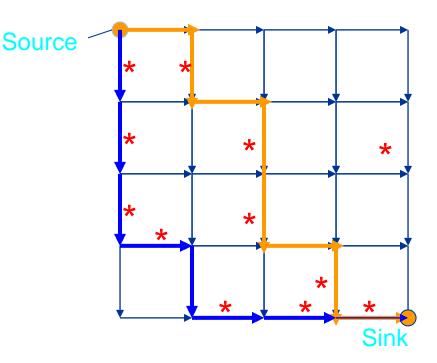
Manhattan Tourist Problem (MTP)

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid



Manhattan Tourist Problem (MTP)

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid



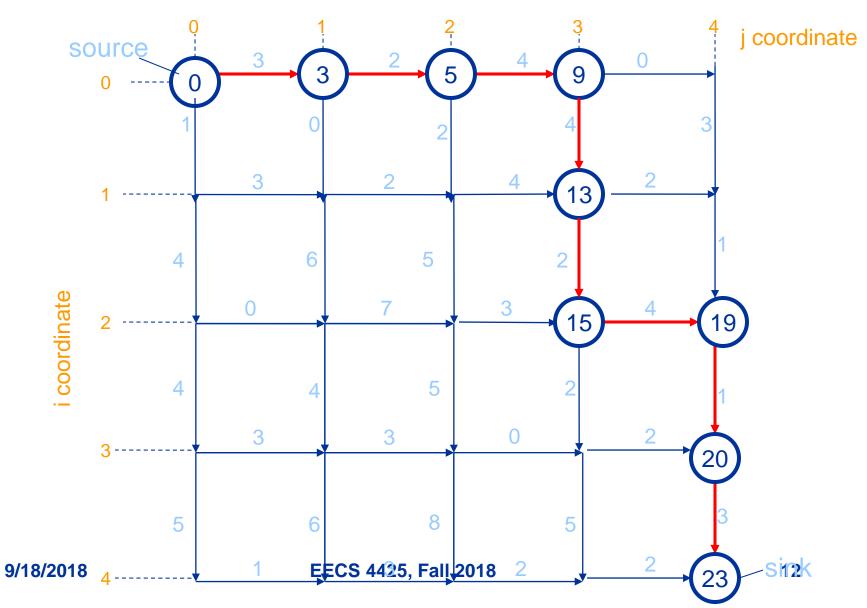
Manhattan Tourist Problem: Formulation

<u>Goal</u>: Find the best path in a weighted grid.

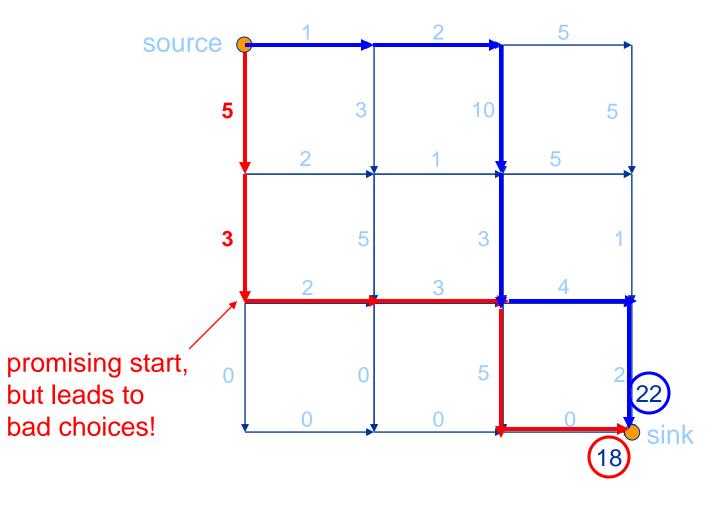
<u>Input</u>: A weighted grid **G** with two distinct vertices, one labeled "source" and the other labeled "sink"

<u>Output</u>: A best path in **G** from "source" to "sink"

MTP: An Example



MTP: Greedy Algorithm Is Not Optimal



MTP: Recurrence

Computing the score for a point *(i,j)* by the recurrence relation:

$$s_{i, j} = \max \left\{ \begin{array}{l} s_{i-1, j} + \text{weight of the edge between } (i-1, j) \text{ and } (i, j) \\ s_{i, j-1} + \text{weight of the edge between } (i, j-1) \text{ and } (i, j) \end{array} \right\}$$

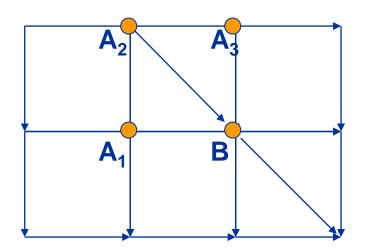
The running time is $n \times m$ for a n by m grid (n = # of rows, m = # of columns)

MTP: Simple Recursive Program

<u>MT(*n*,*m*)</u>

What's wrong with this if n=0 or m=0approach? return *Line(n,m)* $x \leftarrow MT(n-1,m) +$ length of the edge from (n - 1, m) to (n,m) $y \leftarrow MT(n,m-1) +$ length of the edge from (n,m-1) to (n,m)return *max{x,v}*

Manhattan Is Not A Perfect Grid



What about diagonals?

• The score at point B is given by:

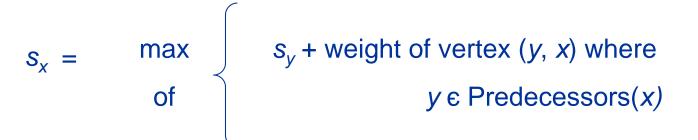
$$s_B = \frac{\max}{of}$$

 s_{A1} + weight of the edge (A_1, B) s_{A2} + weight of the edge (A_2, B) s_{A3} + weight of the edge (A_3, B)

EECS 4425, Fall 2018

Manhattan Is Not A Perfect Grid (cont'd)

Computing the score for point **x** is given by the recurrence relation:



 Predecessors (x) – set of vertices that have edges leading to x

•The running time for a graph G(*V*, *E*) (*V* is the set of all vertices and *E* is the set of all edges) is O(*E*) since each edge is evaluated once

Traveling on the Grid

•The only hitch is that one must decide on the order in which visit the vertices

•By the time the vertex x is analyzed, the values s_y for all its predecessors y should be computed – otherwise we are in trouble.

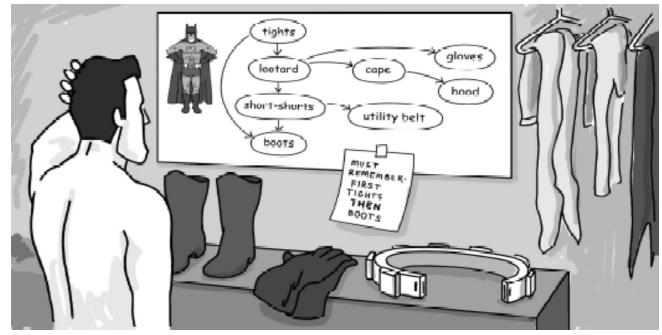
•We need to traverse the vertices in some order

•Try to find such order for a directed cycle

???

DAG: Directed Acyclic Graph

- Since Manhattan is not a perfect regular grid, we represent it as a DAG
- DAG for *Dressing in the morning* problem

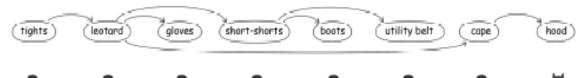


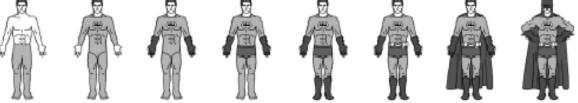
Topological Ordering

- A numbering of vertices of the graph is called *topological ordering* of the DAG if every edge of the DAG connects a vertex with a smaller label to a vertex with a larger label
- In other words, if vertices are positioned on a line in an increasing order of labels then all edges go from left to right.

Topological ordering

2 different topological orderings of the
 DF ^





Longest Path in DAG Problem

• <u>Goal</u>: Find a longest path between two vertices in a weighted DAG

 Input: A weighted DAG G with source and sink vertices

<u>Output</u>: A longest path in *G* from source to sink

9/18/2018

Longest Path in DAG: Dynamic Programming

- Suppose vertex v has indegree 3 and predecessors {u₁, u₂, u₃}
- Longest path to v from source is:

 a_{u_1} + weight of edge from u_1 to v

 $\begin{array}{c|c} \max \\ of \end{array} \quad \forall \quad \mathfrak{s}_{u_2} + \text{weight of edge from } u_2 \text{ to } v \end{array}$

 a_{u_3} + weight of edge from u_3 to v

In General:

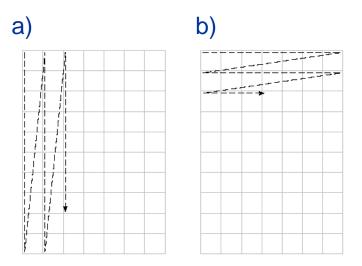
 $s_v = \max_u (s_u + \text{weight of edge from } u \text{ to } v)$

 $\boldsymbol{a}_{_{\mathcal{V}}} =$

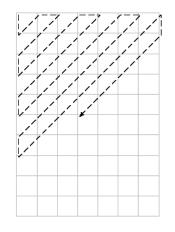
Traversing the Manhattan Grid

 3 different strategies:

 a) Column by column
 b) Row by row
 c) Along diagonals



C)

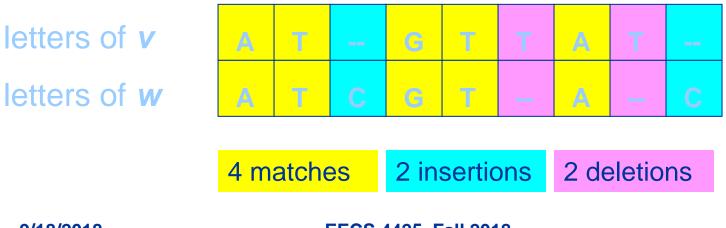


Alignment: 2 row representation

Given 2 DNA sequences **v** and **w**:

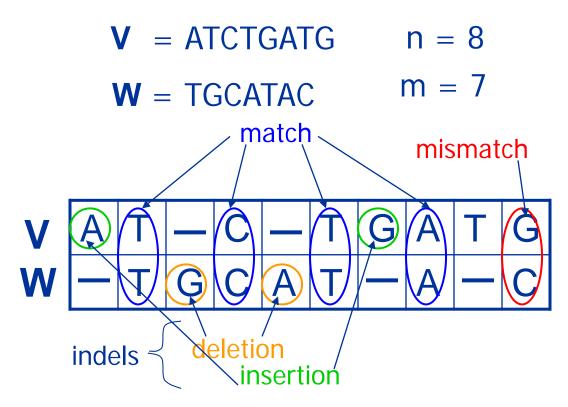
v:ATCTGATm = 7w:TGCATAn = 6

Alignment : 2 * *k* matrix (*k* > *m*, *n*)



EECS 4425, Fall 2018

Aligning DNA Sequences



- 4 matches
- 1 mismatches
- 2 insertions
- 2 deletions

Aligning DNA Sequences - 2

- Brute force is infeasible....
- Number of alignments of X[1..n], Y[1..m],
 n<m is (^{m+n}_n)
- For m=n, this is about $2^{2n}/\pi n$

Longest Common Subsequence (LCS) – Alignment without Mismatches

Given two sequences

 $v = v_1 v_2 ... v_m$ and $w = w_1 w_2 ... w_n$

• The LCS of *v* and *w* is a sequence of positions in

v: $1 \le i_1 < i_2 < ... < i_t \le m$

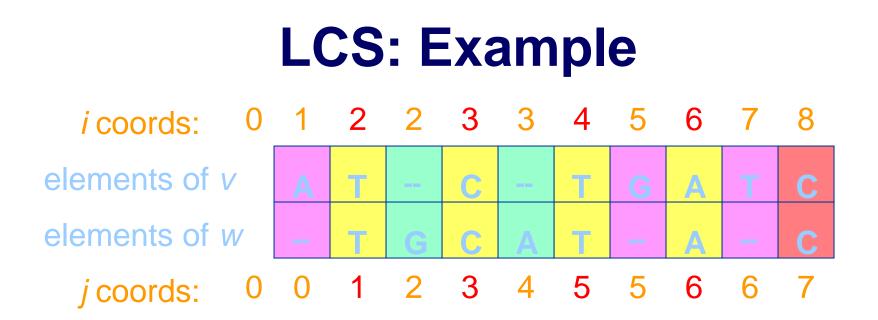
and a sequence of positions in

w: $l \le j_1 < j_2 < ... < j_t \le n$

such that i_t -th letter of **v** equals to j_t -letter of **w** and **t** is maximal

9/18/2018

EECS 4425, Fall 2018

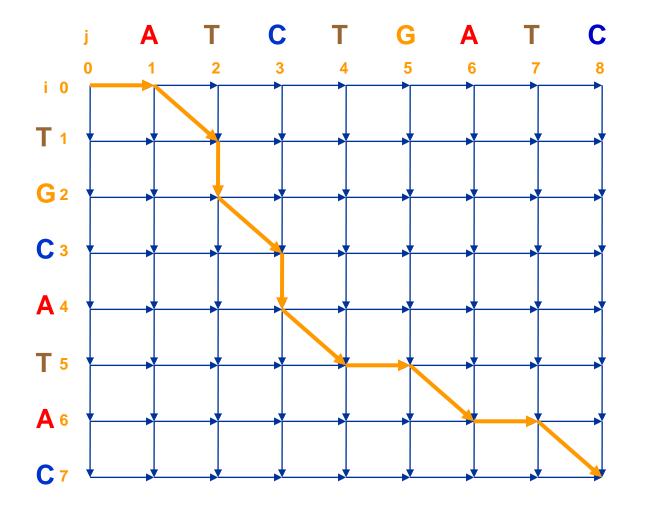


 $(0,0) \rightarrow (1,0) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (3,3) \rightarrow (3,4) \rightarrow (4,5) \rightarrow (5,5) \rightarrow (6,6) \rightarrow (7,6) \rightarrow (8,7)$

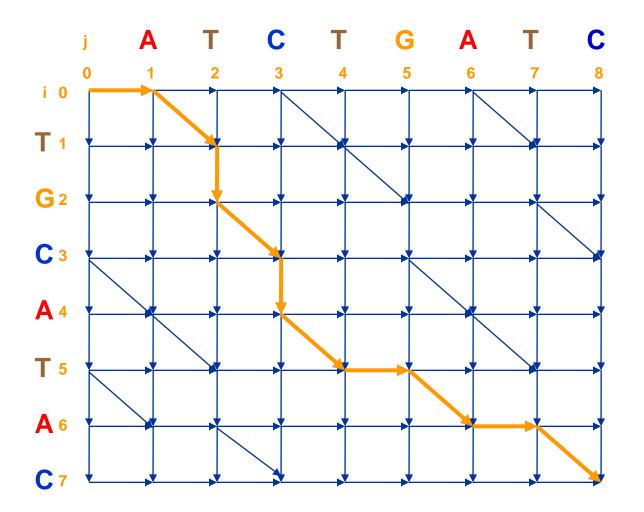
Matches shown in red positions in *v*: 2 < 3 < 4 < 6 < 8positions in *w*: 1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D grid

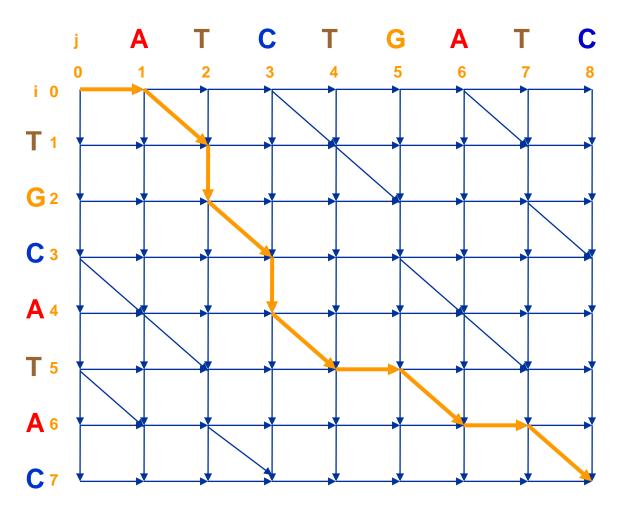
LCS Problem as Manhattan Tourist Problem



Edit Graph for LCS Problem



Edit Graph for LCS Problem



Every path is a common subsequence.

Every diagonal edge adds an extra element to common subsequence

LCS Problem: Find a path with maximum number of diagonal edges

Computing LCS

Let \mathbf{v}_i = prefix of \mathbf{v} of length i: $v_1 \dots v_i$

and w_j = prefix of w of length j: $w_1 \dots w_j$ The length of LCS(v_j, w_j) is computed by:

$$S_{i, j} = \max \begin{cases} S_{i-1, j} \\ S_{i, j-1} \\ S_{i-1, j-1} + 1 \text{ if } V_i = W_j \end{cases}$$

Computing LCS (cont'd)

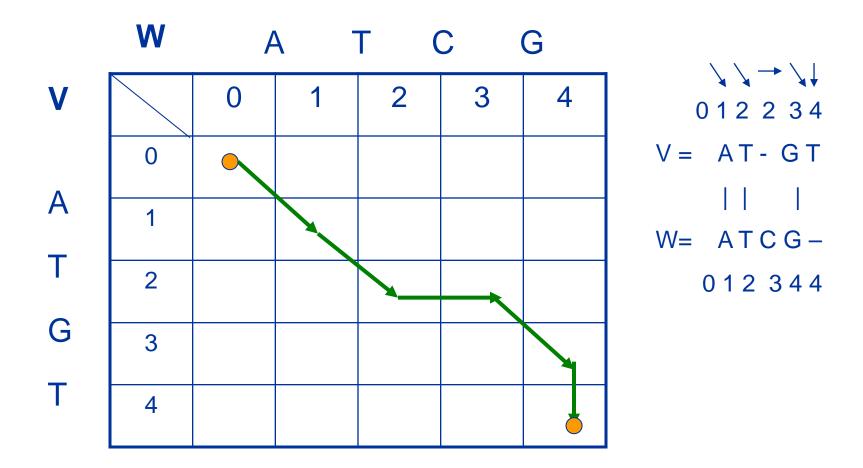
$$S_{i,j} = MAX \quad \begin{cases} S_{i-1,j} + 0 \\ S_{i,j-1} + 0 \\ S_{i-1,j-1} + 1, & \text{if } V_i = W_j \end{cases} \qquad i,j -1$$

9/18/2018

EECS 4425, Fall 2018

i-1.j -1 i-1.j

Every Path in the Grid Corresponds to an Alignment



9/18/2018

Aligning Sequences without Insertions and Deletions: Hamming Distance

Given two DNA sequences *v* and *w*:

v : ATATATAT w: TATATATA

• The Hamming distance: $d_H(\mathbf{v}, \mathbf{w}) = 8$ is large but the sequences are very similar

Aligning Sequences with Insertions and Deletions

By shifting one sequence over one position:

v : ATATATAT-w: --TATATATATA

• The edit distance: $d_H(v, w) = 2$.

Hamming distance neglects insertions and deletions in DNA

Edit Distance

Levenshtein (1966) introduced edit distance between two strings as the minimum number of elementary operations (insertions, deletions, and substitutions) to transform one string into the other

$d(\mathbf{v}, \mathbf{w}) = MIN$ number of elementary operations to transform $\mathbf{v} \rightarrow \mathbf{w}$

Edit Distance vs Hamming Distance

Hamming distance always compares *i*th letter of **v** with ith letter of w $\mathbf{V} = \mathbf{ATATATAT}$ W = TATATATAHamming distance: $d(\mathbf{v}, \mathbf{w}) = \mathbf{8}$

Computing Hamming distance is a trivial task.

Edit Distance vs Hamming Distance

Hamming distance always compares *i*th letter of **v** with ith letter of w $\mathbf{V} = \mathbf{ATATATAT}$ Just one shift Make it all line up W = TATATATAHamming distance: $d(\mathbf{v}, \mathbf{w}) = \mathbf{8}$ **Computing Hamming distance** is a trivial task

Edit distance: d(v, w)=2 Computing edit distance is a non-trivial task

Edit Distance vs Hamming Distance

Hamming distance: d(v, w)=8 Edit distance may compare i^{th} letter of v with j^{th} letter of w V = - ATATATAT||||||||W = TATATATA

Edit distance: d(v, w)=2

(one insertion and one deletion)

How to find what **j** goes with what **i**???

9/18/2018

EECS 4425, Fall 2018

Edit Distance: Example

TGCATAT \rightarrow ATCCGAT in 5 steps

TGCATAT

TGCATAT \rightarrow (delete last T)

 \rightarrow (delete last A)

- \rightarrow (insert A at front)
- \rightarrow (substitute C for 3rd G)

→ (insert G before last A) (Done)

Edit Distance: Example

TGCATAT \rightarrow ATCCGAT in 5 steps

TGCATAT \rightarrow (delete last T)TGCATA \rightarrow (delete last A)TGCAT \rightarrow (insert A at front)ATGCAT \rightarrow (substitute C for 3rd G)ATCCAT \rightarrow (insert G before last A)

ATCCGAT

→ (insert G before last A) (Done)

What is the edit distance? 5?

Edit Distance: Example (cont'd)

TGCATAT \rightarrow ATCCGAT in 4 steps

TGCATAT \rightarrow (insert A at front)ATGCATAT \rightarrow (delete 6th T)ATGCATA \rightarrow (substitute G for 5th A)ATGCGTA \rightarrow (substitute C for 3rd G)ATCCGAT(Done)

Edit Distance: Example (cont'd)

TGCATAT \rightarrow ATCCGAT in 4 steps

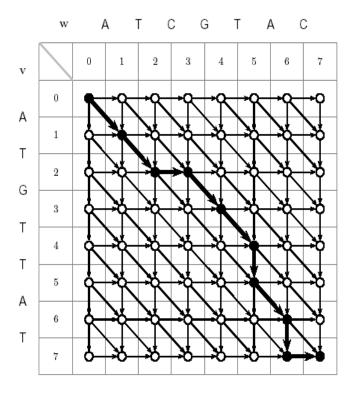
- TGCATAT \rightarrow (insert A at front)
- ATGCATAT \rightarrow (delete 6th T)
- ATGCATA \rightarrow (substitute G for 5th A)
- ATGCGTA \rightarrow (substitute C for 3rd G)
- ATCCGAT (Done)
- Can it be done in 3 steps???

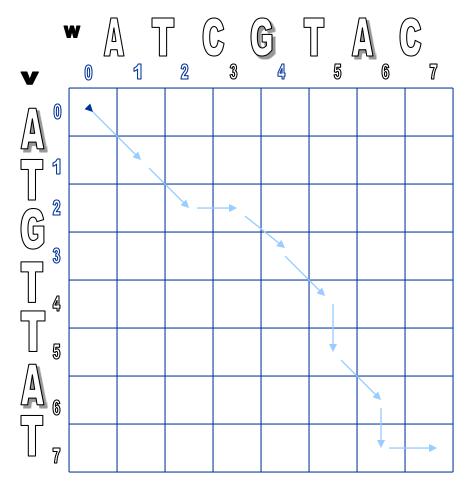
9/18/2018

EECS 4425, Fall 2018

The Alignment Grid $v = \begin{bmatrix} 0 & 1 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & 7 \\ A & T & - & G & T & T & A & T & - \\ & & & & & & & & & & & & \\ w & = & & & & & & & & & & & \\ 0 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 6 & 7 \end{bmatrix}$

Every alignment path is from source to sink





0 1 2 2 3 4 5 6 7 7 A T _ G T T A T _ A T C G T _ A _ C 0 1 2 3 4 5 5 6 6 7

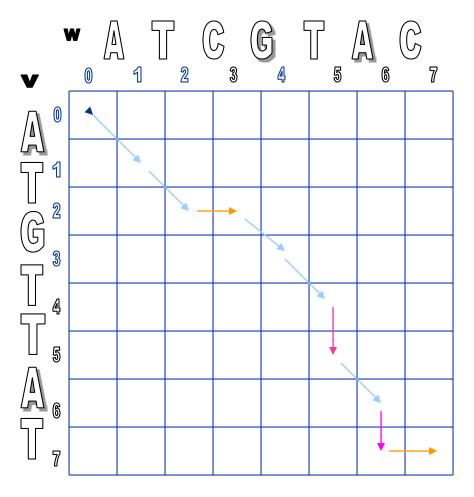
- Corresponding path -

(0, 0), (1, 1), (2, 2), (2, 3), (3, 4), (4, 5), (5, 5), (6, 6), (7, 6), (7, 7)

9/18/2018

EECS 4425, Fall 2018

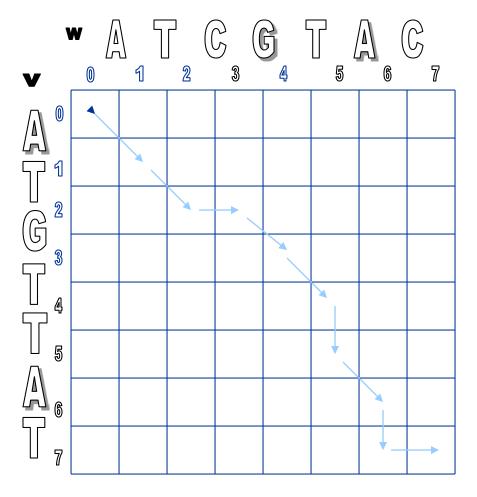
Alignments in Edit Graph (cont'd)



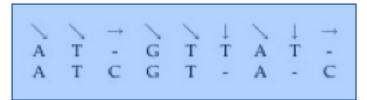
and \rightarrow represent indels in v and w with score 0.

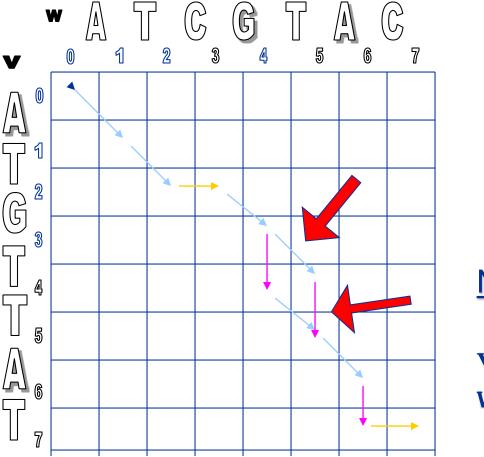
vith score 1.

• The score of the alignment path is 5.

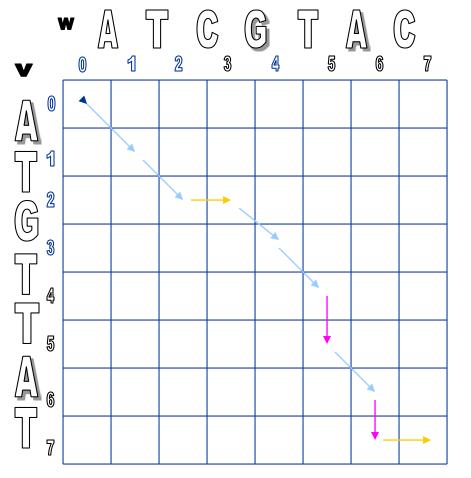


Every path in the edit graph corresponds to an alignment:





<u>New Alignment</u> 0122345677 v= AT_GTTAT_ w= ATCG_TA_C 0123445667



0122345677

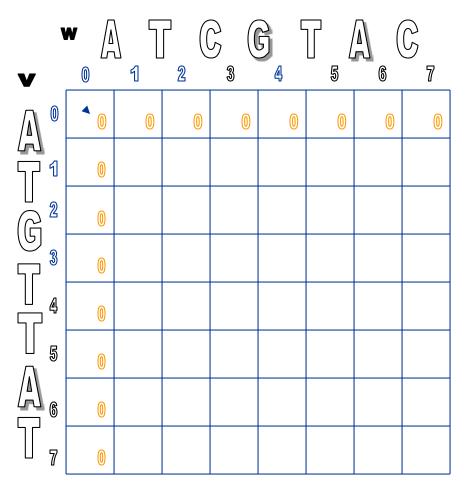
v= AT_GTTAT_ w= ATCGT_A_C 0123455667

(0,0), (1,1), (2,2), (2,3), (3,4), (4,5), (5,5), (6,6), (7,6), (7,7)

Alignment: Dynamic Programming

$$S_{i,j} = \begin{cases} S_{i-1, j-1} + 1 \text{ if } V_i = W_j \\ S_{i-1, j} \\ S_{i, j-1} \end{cases}$$

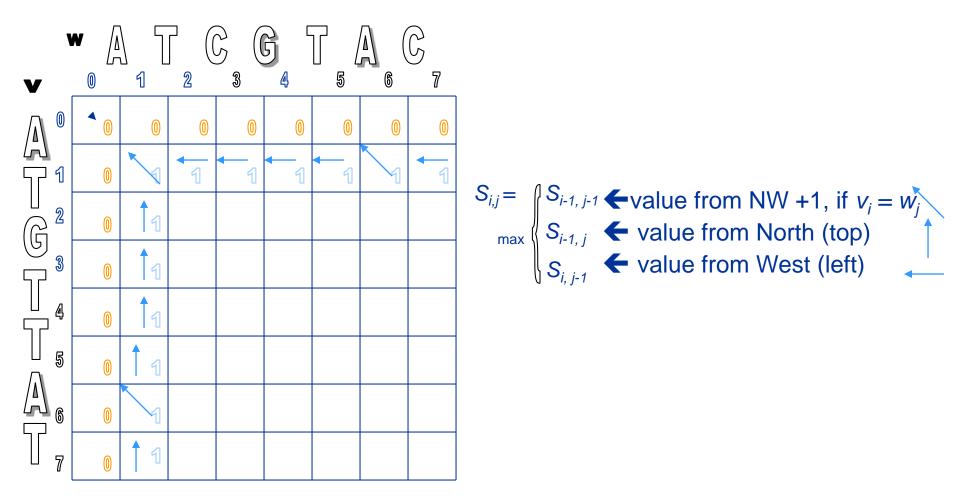
Dynamic Programming Example

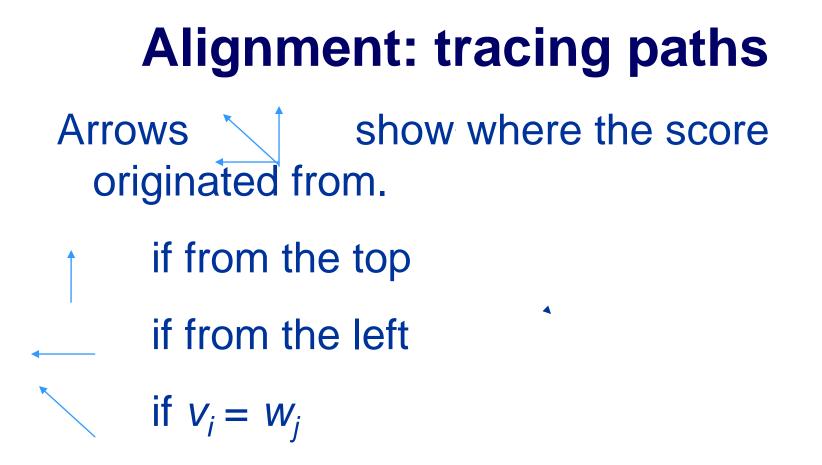


Initialize 1st row and 1st column to be all zeroes.

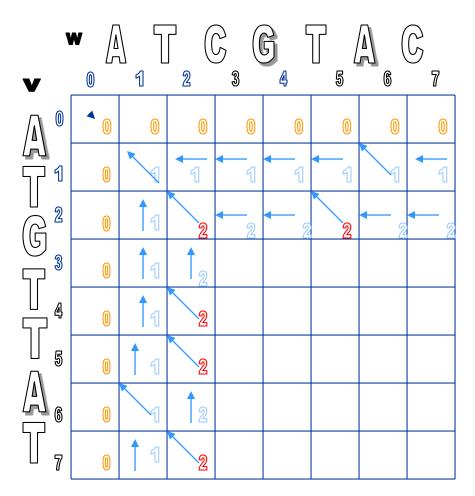
Or, to be more precise, initialize *O*th row and *O*th column to be all zeroes.

Dynamic Programming Example





Path tracing example



Find a match in row and column 2.

i=2, j=2,5 is a match (T).

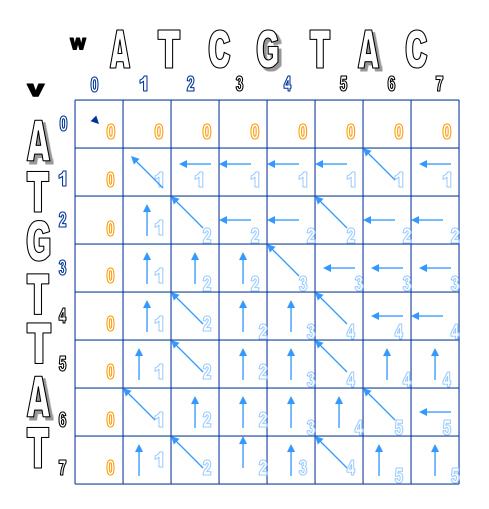
j=2, i=4,5,7 is a match (T).

Since
$$v_i = w_{j, s_{i,j} = s_{i-1,j-1} + 1$$

$$\begin{split} \mathbf{S}_{2,\,2} &= \left[\mathbf{S}_{1,\,1} \,=\, 1 \right] \,+\, 1 \\ \mathbf{S}_{2,\,5} &= \left[\mathbf{S}_{1,\,4} \,=\, 1 \right] \,+\, 1 \\ \mathbf{S}_{4,\,2} &= \left[\mathbf{S}_{3,\,1} \,=\, 1 \right] \,+\, 1 \\ \mathbf{S}_{5,\,2} &= \left[\mathbf{S}_{4,\,1} \,=\, 1 \right] \,+\, 1 \\ \mathbf{S}_{7,\,2} &= \left[\mathbf{S}_{6,\,1} \,=\, 1 \right] \,+\, 1 \end{split}$$

EECS 4425, Fall 2018

Path tracing example



Continuing with the dynamic programming algorithm gives this result.

Alignment: Dynamic Programming

$$S_{i,j} = \begin{cases} S_{i-1, j-1} + 1 \text{ if } V_i = W_j \\ S_{i-1, j} \\ S_{i, j-1} \end{cases}$$

Alignment: Dynamic Programming

$$S_{i,j} = \begin{cases} S_{i-1, j-1} + 1 \text{ if } V_i = W_j \\ S_{i-1, j} + 0 \\ S_{i, j-1} + 0 \end{cases}$$

This recurrence corresponds to the Manhattan Tourist problem (three incoming edges into a vertex) with all horizontal and vertical edges weighted by zero.

9/18/2018

EECS 4425, Fall 2018

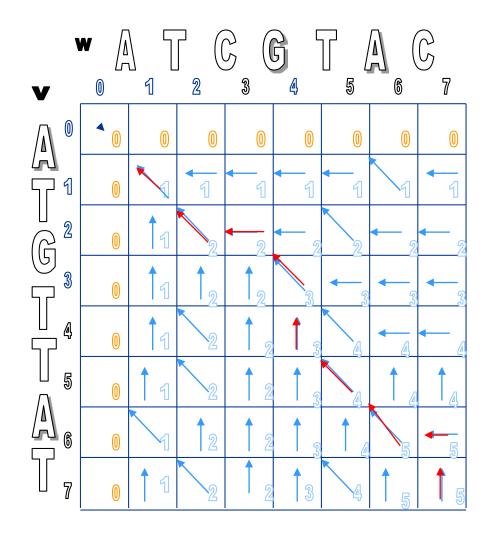
LCS Algorithm

1. LCS(v, w)for $i \in 1$ to n2. 3. $s_{i,0} \in 0$ 4. for $j \leftarrow 1$ to m $s_{0,i} \in 0$ 5. 6. for $i \leftarrow 1$ to n7. for $j \in 1$ to m $s_{i,j} \leftarrow \max \begin{cases} s_{i-1,j} \\ s_{i,j-1} \\ s_{i-1,j-1} + 1, & \text{if } V_i = W_j \end{cases}$ 8. 9. 10. $b_{i,j} \leftarrow \begin{cases} \text{``} \uparrow \text{``} & \text{if } S_{i,j} = S_{i-1,j} \\ \text{``} \leftarrow \text{``} & \text{if } S_{i,j} = S_{i,j-1} \\ \text{``} & \text{``} & \text{if } S_{i,j} = S_{i-1,j-1} + 1 \end{cases}$ 11. **return** $(S_{n, m}, b)$ EECS 4425, Fall 2018

9/18/2018

Now What?

- LCS(v,w) created the alignment grid
- Now we need a way to read the best alignment of v and w
- Follow the arrows backwards from sink



Printing LCS: Backtracking 1. PrintLCS($\mathbf{b}, \mathbf{v}, i, j$) 2. **if** i = 0 or j = 03. return if *b_{i,j}* = " 4. PrintLCS(b,v,i-1,j-1) 5. 6. print V_i else 7. if $b_{i,i} = \uparrow$ " 8. **PrintLCS**(b,v,*i*-1,*j*) 9. 10. else PrintLCS(b,v,i, j-1) 11.

LCS Runtime

 It takes O(*nm*) time to fill in the *nxm* dynamic programming matrix.

 Why O(*nm*)? The pseudocode consists of a nested "for" loop inside of another "for" loop to set up a *nxm* matrix.

Why does DP work?

- Avoids re-computing the same subproblems
- Limits the amount of work done in each step

When is DP applicable?

- Optimal substructure: Optimal solution to problem (instance) contains optimal solutions to sub-problems
- Overlapping sub-problems: Limited number of distinct sub-problems, repeated many many times

Next: Sequence Alignment

- Global Alignment
- Scoring Matrices
- Local Alignment
- Alignment with Affine Gap Penalties

From LCS to Alignment

- The Longest Common Subsequence (LCS) problem the simplest form of sequence alignment – allows only insertions and deletions (no mismatches).
- In the LCS Problem, we scored 1 for matches and 0 for indels
- Consider penalizing indels and mismatches with negative scores
- Simplest scoring schema:
 - +1: match premium
 - - μ : mismatch penalty
 - $-\sigma$: indel penalty

Simple Scoring

When mismatches are penalized by -μ, indels are penalized by -σ, and matches are rewarded with +1, the resulting score is:

#matches – μ (#mismatches) – σ (#indels)

The Global Alignment Problem

Find the best alignment between two strings under a given scoring schema

<u>Input</u> : Strings **v** and **w** and a scoring schema <u>Output</u> : Alignment of maximum score

$$\uparrow \rightarrow = -6$$

= 1 if match
= - μ if mismatch

$$S_{i,j} = \max \begin{cases} S_{i-1,j-1} + 1 & \text{if } v_i = w_j \\ S_{i-1,j-1} - \mu & \text{if } v_j \neq w_j \\ S_{i-1,j} - \sigma \\ S_{i,j-1} - \sigma \end{cases}$$

 μ : mismatch penalty σ : indel penalty

9/18/2018

Scoring Matrices

To generalize scoring, consider a $(4+1) \times (4+1)$ scoring matrix δ.

In the case of an amino acid sequence alignment, the scoring matrix would be a (20+1)x(20+1) size. The addition of 1 is to include the score for comparison of a gap character "-".

This will simplify the algorithm as follows:

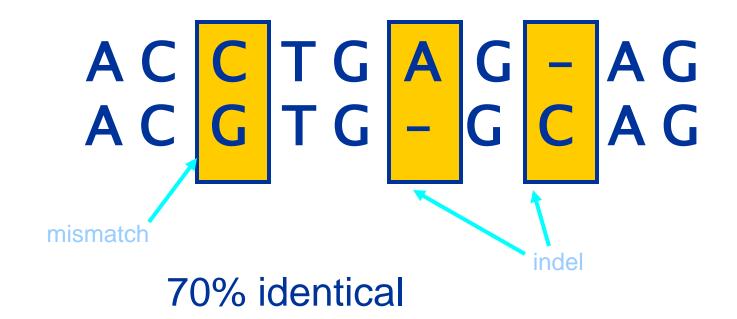
$$S_{i,j} = \max \begin{cases} S_{i-1,j-1} + \delta(V_i, W_j) \\ S_{i-1,j} + \delta(V_i, -) \\ S_{i,j-1} + \delta(V_i, -) \\ S_{i,j-1} + \delta(-, W_j) \end{cases}$$
9/18/2018 EECS 4425, Fall 2018

Measuring Similarity

- Measuring the extent of similarity between two sequences
 - -Based on percent sequence identity
 - -Based on conservation

Percent Sequence Identity

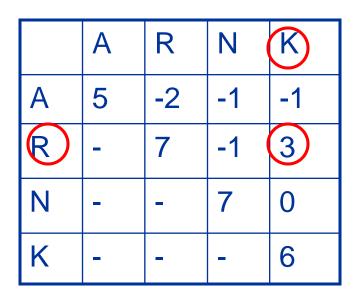
• The extent to which two nucleotide or amino acid sequences are invariant



Making a Scoring Matrix

- Scoring matrices are created based on biological evidence.
- Alignments can be thought of as two sequences that differ due to mutations.
- Some of these mutations have little effect on the protein's function, therefore some penalties, $\delta(v_i, w_j)$, will be less harsh than others.

Scoring Matrix: Example



AKRANR KAAANK-1 + (-1) + (-2) + 5 + 7 + 3 = 11

 Notice that although R and K are different amino acids, they have a positive score.

 Why? They are both positively charged amino acids → will not greatly change function of protein.

Conservation

- Amino acid changes that tend to preserve the physico-chemical properties of the original residue
 - Polar to polar
 - aspartate \rightarrow glutamate
 - Nonpolar to nonpolar
 - alanine \rightarrow valine
 - Similarly behaving residues
 - leucine to isoleucine

Scoring matrices

- Amino acid substitution matrices
 - -PAM
 - BLOSUM
- DNA substitution matrices
 - DNA is less conserved than protein sequences
 - Less effective to compare coding regions at nucleotide level