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Next: sequence alignment
Why align?

Picture from http://www.sequence-alignment.com/
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Local vs Global Alignment
Picture from Wikipedia (By Yz cs5160 - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=54415549)
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Dynamic programming (DP)
• Typically used for optimization problems
• Often results in efficient algorithms
• Not applicable to all problems

Caveats:
• Need not yield poly-time algorithms
• No unique formulations for most 

problems
• May not rule out greedy algorithms
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Example
• Counting the number of shortest paths 

in a grid
• Counting the number of shortest paths 

in a grid with blocked intersections

• Finding paths in a weighted grid

• Sequence alignment
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Setting up DP in practice
• The optimal solution should be 

computable as a (recursive) function of 
the solution to sub-problems

• Solve sub-problems systematically and 
store solutions (to avoid duplication of 
work). 
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Number of paths in a grid
• Combinatorial approach
• DP approach: how can we decompose 

the problem into sub-problems ?
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Number of paths in a grid with 
blocked intersections

• Combinatorial approach?
• DP approach: how can we decompose 

the problem into sub-problems ?



9/18/2018 EECS 4425, Fall 2018 9

Manhattan Tourist Problem (MTP)

Imagine seeking a 
path (from source 
to sink) to travel 
(only eastward and 
southward) with the 
most number of 
attractions (*) in the 
Manhattan grid Sink

*
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Manhattan Tourist Problem (MTP)

Imagine seeking a 
path (from source 
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Manhattan Tourist Problem: Formulation

Goal: Find the best path in a weighted grid.

Input: A weighted grid G with two distinct 
vertices, one labeled “source” and the other 
labeled “sink”

Output: A best path in G from “source” to 
“sink”
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MTP: An Example
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MTP: Greedy Algorithm Is Not Optimal
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MTP: Recurrence

Computing the score for a point (i,j) by the 
recurrence relation:

si, j   = max si-1, j + weight of the edge between (i-1, j) and (i, j) 

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is n x m  for a n by m grid

(n = # of rows, m = # of columns)
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MTP: Simple Recursive Program
MT(n,m)

if n=0 or m=0
return Line(n,m)

x  MT(n-1,m)+
length of the edge from (n- 1,m) to 

(n,m)
y  MT(n,m-1)+

length of the edge from (n,m-1) to 
(n,m)

return max{x,y}

What’s wrong with this 
approach?
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Manhattan Is Not A Perfect Grid

What about diagonals?

• The score at point B is given by:

sB = max 
of

sA1 + weight of the edge  (A1, B)

sA2 + weight of the edge  (A2, B)

sA3 + weight of the edge  (A3, B)

B

A3

A1

A2
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Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the 
recurrence relation:

sx = max 

of

sy + weight of vertex (y, x) where 

y є Predecessors(x)

• Predecessors (x) – set of vertices that have  edges 
leading to x

•The running time for a graph G(V, E)                        
(V is the set of all vertices and E is the set of all edges)      
is O(E) since each edge is evaluated once



9/18/2018 EECS 4425, Fall 2018 18

Traveling on the Grid
•The only hitch is that one must decide on the  
order in which visit the vertices 

•By the time the vertex x is analyzed, the 
values sy for all its predecessors y should be 
computed – otherwise we are in trouble. 

•We need to traverse the vertices in some 
order

•Try to find such order for a directed cycle

???
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DAG: Directed Acyclic Graph
• Since Manhattan is not a perfect regular 

grid, we represent it as a DAG 
• DAG for Dressing in the morning problem
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Topological Ordering

• A numbering of vertices of the graph  is 
called topological ordering of the DAG if 
every edge of the DAG connects a vertex 
with a smaller label to a vertex with a 
larger label

• In other words, if vertices are positioned on 
a line in an increasing order of labels then 
all edges go from left to right. 
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Topological ordering
• 2 different topological orderings of the 

DAG
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Longest Path in DAG Problem

• Goal: Find a longest path between two 
vertices in a weighted DAG

• Input: A weighted DAG G with source and 
sink vertices

• Output: A longest path in G from source to 
sink
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Longest Path in DAG: Dynamic Programming

• Suppose vertex v has indegree 3 and 
predecessors {u1, u2, u3}

• Longest path to v from source is:

In General: 
sv = maxu (su + weight of edge from u to v) 

sv = max 
of

su1 + weight of edge from u1 to v
su2 + weight of edge from u2 to v
su3 + weight of edge from u3 to v
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Traversing the Manhattan Grid 

• 3 different strategies:
– a) Column by 

column
– b) Row by row
– c) Along diagonals

a) b)

c)
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Alignment: 2 row representation

Alignment :  2 * k matrix ( k > m, n )

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w
T

T

AT CT GAT
T GCAT A

v  :
w :

m = 7 
n = 6

4 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:
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Aligning DNA Sequences

V = ATCTGATG
W = TGCATAC

n = 8
m = 7

A T C T G A T G
T G C A T A C

V
W 

match

deletion
insertion

mismatch

indels

4
1
2
2

matches
mismatches
insertions
deletions
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Aligning DNA Sequences - 2
• Brute force is infeasible….
• Number of alignments of X[1..n],Y[1..m], 

n<m is (    )
• For m=n, this is about  22n/πn

m+n
n
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Longest Common Subsequence (LCS) –
Alignment without Mismatches

• Given two sequences 

v = v1 v2…vm and w = w1 w2…wn

• The LCS of v and w is a sequence of positions in 

v: 1 < i1 < i2 < … < it < m
and a sequence of positions in 

w: 1 < j1 < j2 < … < jt < n
such that it -th letter of v equals to jt-letter of w and t
is maximal
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LCS: Example

A T -- C T G A T C
-- T G C T -- A -- C

elements of v

elements of w
--

A
1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in red
positions in v:
positions in w: 

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D grid

0

0

(0,0)(1,0)(2,1)(2,2)(3,3)(3,4)(4,5)(5,5)(6,6)(7,6)(8,7)
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LCS Problem as Manhattan Tourist Problem
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Edit Graph for LCS Problem
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Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2
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5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a 
common 
subsequence.

Every diagonal 
edge adds an 
extra element to 
common 
subsequence

LCS Problem:
Find a path with 
maximum 
number of 
diagonal edges
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Computing LCS
Let vi =   prefix of v of length i:    v1 … vi

and wj =  prefix of w of length j:   w1 … wj

The length of LCS(vi,wj) is computed by:

si, j = max
si-1, j

si, j-1

si-1, j-1 + 1 if  vi = wj
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Computing LCS (cont’d)

si,j = MAX
si-1,j + 0 
si,j -1 + 0 
si-1,j -1 + 1,    if  vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0
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Every Path in the Grid Corresponds 
to an Alignment 

0 1 2 3 4

0

1

2

3

4

W A T C G

A

T

G

T

V 0 1 2  2  3 4

V =    A T - G T

|  |       |

W=    A T C G –

0 1 2  3 4 4
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Aligning Sequences without Insertions 
and Deletions: Hamming Distance

Given two DNA sequences v and w :

v  :

• The Hamming distance: dH(v, w)  =  8 is 
large but the sequences are very similar

AT AT AT AT
AT AT AT ATw :
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Aligning Sequences with 
Insertions and Deletions

v  : AT AT AT AT
AT AT AT ATw : --
--

By shifting one sequence over one position:

• The edit distance: dH(v, w)  =  2.

• Hamming distance neglects insertions and 
deletions in DNA
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Edit Distance
Levenshtein (1966) introduced edit distance
between two strings as the minimum number 
of elementary operations (insertions, deletions, 
and substitutions) to transform one string into 
the other

d(v,w) = MIN number of elementary operations
to transform v w
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Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance 
always compares
i-th letter of v with
i-th letter of w

Hamming distance:
d(v, w)=8

Computing Hamming distance
is a trivial task.
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Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance: Edit distance: 
d(v, w)=8 d(v, w)=2

Computing Hamming distance             Computing edit distance
is a trivial task                             is a non-trivial task

W = TATATATA
Just one shift

Make it all line up

V = - ATATATAT

Hamming distance 
always compares
i-th letter of v with
i-th letter of w

Edit distance 
may compare
i-th letter of v with
j-th letter of w
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Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance: Edit distance: 
d(v, w)=8 d(v, w)=2

(one insertion and one deletion)

How to find what j goes with what i ???

W = TATATATA

V = - ATATATAT

Hamming distance 
always compares
i-th letter of v with
i-th letter of w

Edit distance 
may compare
i-th letter of v with
j-th letter of w
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Edit Distance: Example
TGCATAT  ATCCGAT in 5 steps

TGCATAT  (delete last T)
TGCATA  (delete last A)
TGCAT        (insert A at front)
ATGCAT      (substitute C for 3rd G)
ATCCAT      (insert G before last A) 
ATCCGAT       (Done)
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Edit Distance: Example
TGCATAT  ATCCGAT in 5 steps

TGCATAT  (delete last T)
TGCATA  (delete last A)
TGCAT        (insert A at front)
ATGCAT      (substitute C for 3rd G)
ATCCAT      (insert G before last A) 
ATCCGAT       (Done)
What is the edit distance?  5?
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Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT    (insert A at front)
ATGCATAT  (delete 6th T)
ATGCATA    (substitute G for 5th A)
ATGCGTA    (substitute C for 3rd G)
ATCCGAT (Done)



9/18/2018 EECS 4425, Fall 2018 46

Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT    (insert A at front)
ATGCATAT  (delete 6th T)
ATGCATA    (substitute G for 5th A)
ATGCGTA    (substitute C for 3rd G)
ATCCGAT (Done)

Can it be done in 3 steps???
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The Alignment Grid 

– Every alignment 
path is from 
source to sink
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Alignment as a Path in the Edit Graph

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7  

(0,0) , (1,1) , (2,2), (2,3), 
(3,4), (4,5), (5,5), (6,6), 
(7,6), (7,7)

- Corresponding path -
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Alignments in Edit Graph (cont’d)

and       represent 
indels in v and w with 
score 0.

represent matches 
with score 1.
• The score of the 
alignment path is 5.



9/18/2018 EECS 4425, Fall 2018 50

Alignment as a Path in the Edit Graph

Every path in the edit 
graph corresponds to 
an alignment:
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Alignment as a Path in the Edit Graph
Old Alignment

0122345677
v=  AT_GTTAT_
w=  ATCGT_A_C

0123455667

New Alignment
0122345677

v=  AT_GTTAT_
w=  ATCG_TA_C

0123445667
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Alignment as a Path in the Edit Graph

0122345677
v=  AT_GTTAT_
w=  ATCGT_A_C

0123455667

(0,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6), 
(7,6), (7,7)
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Alignment: Dynamic Programming

si,j =           si-1, j-1+1 if vi = wj

max            si-1, j

si, j-1
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Dynamic Programming 
Example

Initialize 1st row and 
1st column to be all 
zeroes. 

Or, to be more 
precise, initialize 0th

row and 0th column to 
be all zeroes.
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Dynamic Programming 
Example

Si,j =     Si-1, j-1

max     Si-1, j

Si, j-1

value from NW +1, if vi = wj
 value from North (top)
 value from West (left)
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Alignment: tracing paths
Arrows              show where the score 

originated from.   

if from the top

if from the left

if vi = wj
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Path tracing example

Find a match in row and column 2.

i=2, j=2,5 is a match (T).              

j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1 
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1
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Path tracing example

Continuing with the 
dynamic programming  
algorithm gives this 
result.



9/18/2018 EECS 4425, Fall 2018 59

Alignment: Dynamic Programming

si,j =           si-1, j-1+1 if vi = wj

max            si-1, j

si, j-1
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Alignment: Dynamic Programming

si,j =           si-1, j-1+1 if vi = wj

max            si-1, j+0

si, j-1+0

This recurrence corresponds to the Manhattan Tourist 
problem (three incoming edges into a  vertex) with all 
horizontal and vertical edges weighted by zero.
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LCS Algorithm
1. LCS(v,w)

2. for i  1 to n

3. si,0  0

4. for j  1 to m

5. s0,j  0

6. for i  1 to n

7. for j  1 to m

8. si-1,j
9. si,j  max   si,j-1
10. si-1,j-1 + 1, if vi = wj
11. “   “   if si,j = si-1,j
• bi,j  “   “   if si,j = si,j-1
• “   “  if si,j = si-1,j-1 + 1

• return (sn,m, b)
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Now What?

• LCS(v,w) created the 
alignment grid

• Now we need a way to 
read the best 
alignment of v and w

• Follow the arrows 
backwards from sink
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Printing LCS: Backtracking
1. PrintLCS(b,v,i,j)
2. if i = 0 or j = 0
3. return
4. if bi,j = “     “
5. PrintLCS(b,v,i-1,j-1)
6. print vi
7. else
8. if bi,j = “     “
9. PrintLCS(b,v,i-1,j)
10. else
11. PrintLCS(b,v,i,j-1)
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LCS Runtime
• It takes O(nm) time to fill in the nxm

dynamic programming matrix.

• Why O(nm)?  The pseudocode consists 
of a nested “for” loop inside of another 
“for” loop to set up a nxm matrix. 
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Why does DP work?
• Avoids re-computing the same sub-

problems
• Limits the amount of work done in each 

step
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When is DP applicable?

– Optimal substructure: Optimal 
solution to problem (instance) contains 
optimal solutions to sub-problems

– Overlapping sub-problems: Limited 
number of distinct sub-problems, 
repeated many many times
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Next: Sequence Alignment
• Global Alignment 
• Scoring Matrices
• Local Alignment
• Alignment with Affine Gap Penalties
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From LCS to Alignment
• The Longest Common Subsequence (LCS) problem—

the simplest form of sequence alignment – allows only 
insertions and deletions (no mismatches). 

• In the LCS Problem, we scored 1 for matches and 0 for 
indels

• Consider penalizing indels and mismatches with 
negative scores

• Simplest scoring schema: 
+1 : match premium
-μ : mismatch penalty
-σ : indel penalty
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Simple Scoring
• When mismatches are penalized by –μ, 

indels are penalized by –σ, 
and matches are rewarded with +1, 
the resulting score is:

#matches – μ(#mismatches) – σ
(#indels)
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The Global Alignment Problem
Find the best alignment between two strings under a given 

scoring schema

Input : Strings v and w and a scoring schema
Output : Alignment of maximum score

↑→ = -б
= 1 if match
= -µ if mismatch

si-1,j-1 +1 if vi = wj
si,j =  max      s i-1,j-1 -µ if vi ≠ wj

s i-1,j - σ
s i,j-1 - σ

µ : mismatch penalty
σ : indel penalty
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Scoring Matrices 
To generalize scoring, consider a (4+1) x(4+1) 

scoring matrix δ. 
In the case of an amino acid sequence 

alignment, the scoring matrix would be a 
(20+1)x(20+1) size.  The addition of 1 is to 
include the score for comparison of a gap 
character “-”.

This will simplify the algorithm as follows:
si-1,j-1 + δ (vi, wj)

si,j =    max      s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)
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Measuring Similarity
• Measuring the extent of similarity 

between two sequences
– Based on percent sequence identity
– Based on conservation
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Percent Sequence Identity
• The extent to which two nucleotide or 

amino acid sequences are invariant

A C  C  T G  A  G  – A G 
A C  G  T G  – G  C  A G

70% identical
mismatch

indel
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Making a Scoring Matrix
• Scoring matrices are created based on 

biological evidence. 
• Alignments can be thought of as two 

sequences that differ due to mutations.  
• Some of these mutations have little 

effect on the protein’s function, therefore 
some penalties, δ(vi , wj), will be less 
harsh than others.
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Scoring Matrix: Example
A R N K

A 5 -2 -1 -1
R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although 
R and K are different 
amino acids, they 
have a positive score.

• Why? They are both 
positively charged 
amino acids will not 
greatly change 
function of protein.
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Conservation
• Amino acid changes that tend to 

preserve the physico-chemical 
properties of the original residue
– Polar to polar

• aspartate  glutamate
– Nonpolar to nonpolar

• alanine  valine
– Similarly behaving residues

• leucine to isoleucine
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Scoring matrices
• Amino acid substitution matrices

– PAM
– BLOSUM

• DNA substitution matrices
– DNA is less conserved than protein 

sequences
– Less effective to compare coding 

regions at nucleotide level
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