
9/18/2018 EECS 4425, Fall 2018 1

EECS 4425:
Introductory Computational Bioinformatics

Fall 2018

Suprakash Datta
datta [at] cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/4425
Many of the slides are taken from www.bioalgorithms.info

http://www.cse.yorku.ca/course/4425

9/18/2018 EECS 4425, Fall 2018 2

Next: sequence alignment
Why align?

Picture from http://www.sequence-alignment.com/

9/18/2018 EECS 4425, Fall 2018 3

Local vs Global Alignment
Picture from Wikipedia (By Yz cs5160 - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=54415549)

9/18/2018 EECS 4425, Fall 2018 4

Dynamic programming (DP)
• Typically used for optimization problems
• Often results in efficient algorithms
• Not applicable to all problems

Caveats:
• Need not yield poly-time algorithms
• No unique formulations for most

problems
• May not rule out greedy algorithms

9/18/2018 EECS 4425, Fall 2018 5

Example
• Counting the number of shortest paths

in a grid
• Counting the number of shortest paths

in a grid with blocked intersections

• Finding paths in a weighted grid

• Sequence alignment

9/18/2018 EECS 4425, Fall 2018 6

Setting up DP in practice
• The optimal solution should be

computable as a (recursive) function of
the solution to sub-problems

• Solve sub-problems systematically and
store solutions (to avoid duplication of
work).

9/18/2018 EECS 4425, Fall 2018 7

Number of paths in a grid
• Combinatorial approach
• DP approach: how can we decompose

the problem into sub-problems ?

9/18/2018 EECS 4425, Fall 2018 8

Number of paths in a grid with
blocked intersections

• Combinatorial approach?
• DP approach: how can we decompose

the problem into sub-problems ?

9/18/2018 EECS 4425, Fall 2018 9

Manhattan Tourist Problem (MTP)

Imagine seeking a
path (from source
to sink) to travel
(only eastward and
southward) with the
most number of
attractions (*) in the
Manhattan grid Sink

*

*

*

*
*

**

* *

*

*

Source

*

9/18/2018 EECS 4425, Fall 2018 10

Manhattan Tourist Problem (MTP)

Imagine seeking a
path (from source
to sink) to travel
(only eastward and
southward) with the
most number of
attractions (*) in the
Manhattan grid Sink

*

*

*

*
*

**

* *

*

*

Source

*

9/18/2018 EECS 4425, Fall 2018 11

Manhattan Tourist Problem: Formulation

Goal: Find the best path in a weighted grid.

Input: A weighted grid G with two distinct
vertices, one labeled “source” and the other
labeled “sink”

Output: A best path in G from “source” to
“sink”

9/18/2018 EECS 4425, Fall 2018 12

MTP: An Example

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i c

oo
rd

in
at

e

13

source

sink

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4 19

95

15

23

0

20

3

4

9/18/2018 EECS 4425, Fall 2018 13

MTP: Greedy Algorithm Is Not Optimal

1 2 5

2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2promising start,
but leads to
bad choices!

source

sink
18

22

9/18/2018 EECS 4425, Fall 2018 14

MTP: Recurrence

Computing the score for a point (i,j) by the
recurrence relation:

si, j = max si-1, j + weight of the edge between (i-1, j) and (i, j)

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is n x m for a n by m grid

(n = # of rows, m = # of columns)

9/18/2018 EECS 4425, Fall 2018 15

MTP: Simple Recursive Program
MT(n,m)

if n=0 or m=0
return Line(n,m)

x  MT(n-1,m)+
length of the edge from (n- 1,m) to

(n,m)
y  MT(n,m-1)+

length of the edge from (n,m-1) to
(n,m)

return max{x,y}

What’s wrong with this
approach?

9/18/2018 EECS 4425, Fall 2018 16

Manhattan Is Not A Perfect Grid

What about diagonals?

• The score at point B is given by:

sB = max
of

sA1 + weight of the edge (A1, B)

sA2 + weight of the edge (A2, B)

sA3 + weight of the edge (A3, B)

B

A3

A1

A2

9/18/2018 EECS 4425, Fall 2018 17

Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the
recurrence relation:

sx = max

of

sy + weight of vertex (y, x) where

y є Predecessors(x)

• Predecessors (x) – set of vertices that have edges
leading to x

•The running time for a graph G(V, E)
(V is the set of all vertices and E is the set of all edges)
is O(E) since each edge is evaluated once

9/18/2018 EECS 4425, Fall 2018 18

Traveling on the Grid
•The only hitch is that one must decide on the
order in which visit the vertices

•By the time the vertex x is analyzed, the
values sy for all its predecessors y should be
computed – otherwise we are in trouble.

•We need to traverse the vertices in some
order

•Try to find such order for a directed cycle

???

9/18/2018 EECS 4425, Fall 2018 19

DAG: Directed Acyclic Graph
• Since Manhattan is not a perfect regular

grid, we represent it as a DAG
• DAG for Dressing in the morning problem

9/18/2018 EECS 4425, Fall 2018 20

Topological Ordering

• A numbering of vertices of the graph is
called topological ordering of the DAG if
every edge of the DAG connects a vertex
with a smaller label to a vertex with a
larger label

• In other words, if vertices are positioned on
a line in an increasing order of labels then
all edges go from left to right.

9/18/2018 EECS 4425, Fall 2018 21

Topological ordering
• 2 different topological orderings of the

DAG

9/18/2018 EECS 4425, Fall 2018 22

Longest Path in DAG Problem

• Goal: Find a longest path between two
vertices in a weighted DAG

• Input: A weighted DAG G with source and
sink vertices

• Output: A longest path in G from source to
sink

9/18/2018 EECS 4425, Fall 2018 23

Longest Path in DAG: Dynamic Programming

• Suppose vertex v has indegree 3 and
predecessors {u1, u2, u3}

• Longest path to v from source is:

In General:
sv = maxu (su + weight of edge from u to v)

sv = max
of

su1 + weight of edge from u1 to v
su2 + weight of edge from u2 to v
su3 + weight of edge from u3 to v

9/18/2018 EECS 4425, Fall 2018 24

Traversing the Manhattan Grid

• 3 different strategies:
– a) Column by

column
– b) Row by row
– c) Along diagonals

a) b)

c)

9/18/2018 EECS 4425, Fall 2018 25

Alignment: 2 row representation

Alignment : 2 * k matrix (k > m, n)

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w
T

T

AT CT GAT
T GCAT A

v :
w :

m = 7
n = 6

4 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:

9/18/2018 EECS 4425, Fall 2018 26

Aligning DNA Sequences

V = ATCTGATG
W = TGCATAC

n = 8
m = 7

A T C T G A T G
T G C A T A C

V
W

match

deletion
insertion

mismatch

indels

4
1
2
2

matches
mismatches
insertions
deletions

9/18/2018 EECS 4425, Fall 2018 27

Aligning DNA Sequences - 2
• Brute force is infeasible….
• Number of alignments of X[1..n],Y[1..m],

n<m is ()
• For m=n, this is about 22n/πn

m+n
n

9/18/2018 EECS 4425, Fall 2018 28

Longest Common Subsequence (LCS) –
Alignment without Mismatches

• Given two sequences

v = v1 v2…vm and w = w1 w2…wn

• The LCS of v and w is a sequence of positions in

v: 1 < i1 < i2 < … < it < m
and a sequence of positions in

w: 1 < j1 < j2 < … < jt < n
such that it -th letter of v equals to jt-letter of w and t
is maximal

9/18/2018 EECS 4425, Fall 2018 29

LCS: Example

A T -- C T G A T C
-- T G C T -- A -- C

elements of v

elements of w
--

A
1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in red
positions in v:
positions in w:

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D grid

0

0

(0,0)(1,0)(2,1)(2,2)(3,3)(3,4)(4,5)(5,5)(6,6)(7,6)(8,7)

9/18/2018 EECS 4425, Fall 2018 31

LCS Problem as Manhattan Tourist Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

9/18/2018 EECS 4425, Fall 2018 32

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

9/18/2018 EECS 4425, Fall 2018 33

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a
common
subsequence.

Every diagonal
edge adds an
extra element to
common
subsequence

LCS Problem:
Find a path with
maximum
number of
diagonal edges

9/18/2018 EECS 4425, Fall 2018 34

Computing LCS
Let vi = prefix of v of length i: v1 … vi

and wj = prefix of w of length j: w1 … wj

The length of LCS(vi,wj) is computed by:

si, j = max
si-1, j

si, j-1

si-1, j-1 + 1 if vi = wj

9/18/2018 EECS 4425, Fall 2018 35

Computing LCS (cont’d)

si,j = MAX
si-1,j + 0
si,j -1 + 0
si-1,j -1 + 1, if vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

9/18/2018 EECS 4425, Fall 2018 36

Every Path in the Grid Corresponds
to an Alignment

0 1 2 3 4

0

1

2

3

4

W A T C G

A

T

G

T

V 0 1 2 2 3 4

V = A T - G T

| | |

W= A T C G –

0 1 2 3 4 4

9/18/2018 EECS 4425, Fall 2018 37

Aligning Sequences without Insertions
and Deletions: Hamming Distance

Given two DNA sequences v and w :

v :

• The Hamming distance: dH(v, w) = 8 is
large but the sequences are very similar

AT AT AT AT
AT AT AT ATw :

9/18/2018 EECS 4425, Fall 2018 38

Aligning Sequences with
Insertions and Deletions

v : AT AT AT AT
AT AT AT ATw : --
--

By shifting one sequence over one position:

• The edit distance: dH(v, w) = 2.

• Hamming distance neglects insertions and
deletions in DNA

9/18/2018 EECS 4425, Fall 2018 39

Edit Distance
Levenshtein (1966) introduced edit distance
between two strings as the minimum number
of elementary operations (insertions, deletions,
and substitutions) to transform one string into
the other

d(v,w) = MIN number of elementary operations
to transform v w

9/18/2018 EECS 4425, Fall 2018 40

Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance
always compares
i-th letter of v with
i-th letter of w

Hamming distance:
d(v, w)=8

Computing Hamming distance
is a trivial task.

9/18/2018 EECS 4425, Fall 2018 41

Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2

Computing Hamming distance Computing edit distance
is a trivial task is a non-trivial task

W = TATATATA
Just one shift

Make it all line up

V = - ATATATAT

Hamming distance
always compares
i-th letter of v with
i-th letter of w

Edit distance
may compare
i-th letter of v with
j-th letter of w

9/18/2018 EECS 4425, Fall 2018 42

Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2

(one insertion and one deletion)

How to find what j goes with what i ???

W = TATATATA

V = - ATATATAT

Hamming distance
always compares
i-th letter of v with
i-th letter of w

Edit distance
may compare
i-th letter of v with
j-th letter of w

9/18/2018 EECS 4425, Fall 2018 43

Edit Distance: Example
TGCATAT  ATCCGAT in 5 steps

TGCATAT  (delete last T)
TGCATA  (delete last A)
TGCAT  (insert A at front)
ATGCAT  (substitute C for 3rd G)
ATCCAT  (insert G before last A)
ATCCGAT (Done)

9/18/2018 EECS 4425, Fall 2018 44

Edit Distance: Example
TGCATAT  ATCCGAT in 5 steps

TGCATAT  (delete last T)
TGCATA  (delete last A)
TGCAT  (insert A at front)
ATGCAT  (substitute C for 3rd G)
ATCCAT  (insert G before last A)
ATCCGAT (Done)
What is the edit distance? 5?

9/18/2018 EECS 4425, Fall 2018 45

Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT  (insert A at front)
ATGCATAT  (delete 6th T)
ATGCATA  (substitute G for 5th A)
ATGCGTA  (substitute C for 3rd G)
ATCCGAT (Done)

9/18/2018 EECS 4425, Fall 2018 46

Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT  (insert A at front)
ATGCATAT  (delete 6th T)
ATGCATA  (substitute G for 5th A)
ATGCGTA  (substitute C for 3rd G)
ATCCGAT (Done)

Can it be done in 3 steps???

9/18/2018 EECS 4425, Fall 2018 47

The Alignment Grid

– Every alignment
path is from
source to sink

9/18/2018 EECS 4425, Fall 2018 48

Alignment as a Path in the Edit Graph

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7

(0,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)

- Corresponding path -

9/18/2018 EECS 4425, Fall 2018 49

Alignments in Edit Graph (cont’d)

and represent
indels in v and w with
score 0.

represent matches
with score 1.
• The score of the
alignment path is 5.

9/18/2018 EECS 4425, Fall 2018 50

Alignment as a Path in the Edit Graph

Every path in the edit
graph corresponds to
an alignment:

9/18/2018 EECS 4425, Fall 2018 51

Alignment as a Path in the Edit Graph
Old Alignment

0122345677
v= AT_GTTAT_
w= ATCGT_A_C

0123455667

New Alignment
0122345677

v= AT_GTTAT_
w= ATCG_TA_C

0123445667

9/18/2018 EECS 4425, Fall 2018 52

Alignment as a Path in the Edit Graph

0122345677
v= AT_GTTAT_
w= ATCGT_A_C

0123455667

(0,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)

9/18/2018 EECS 4425, Fall 2018 53

Alignment: Dynamic Programming

si,j = si-1, j-1+1 if vi = wj

max si-1, j

si, j-1

9/18/2018 EECS 4425, Fall 2018 54

Dynamic Programming
Example

Initialize 1st row and
1st column to be all
zeroes.

Or, to be more
precise, initialize 0th

row and 0th column to
be all zeroes.

9/18/2018 EECS 4425, Fall 2018 55

Dynamic Programming
Example

Si,j = Si-1, j-1

max Si-1, j

Si, j-1

value from NW +1, if vi = wj
 value from North (top)
 value from West (left)

9/18/2018 EECS 4425, Fall 2018 56

Alignment: tracing paths
Arrows show where the score

originated from.

if from the top

if from the left

if vi = wj

9/18/2018 EECS 4425, Fall 2018 57

Path tracing example

Find a match in row and column 2.

i=2, j=2,5 is a match (T).

j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1

9/18/2018 EECS 4425, Fall 2018 58

Path tracing example

Continuing with the
dynamic programming
algorithm gives this
result.

9/18/2018 EECS 4425, Fall 2018 59

Alignment: Dynamic Programming

si,j = si-1, j-1+1 if vi = wj

max si-1, j

si, j-1

9/18/2018 EECS 4425, Fall 2018 60

Alignment: Dynamic Programming

si,j = si-1, j-1+1 if vi = wj

max si-1, j+0

si, j-1+0

This recurrence corresponds to the Manhattan Tourist
problem (three incoming edges into a vertex) with all
horizontal and vertical edges weighted by zero.

9/18/2018 EECS 4425, Fall 2018 61

LCS Algorithm
1. LCS(v,w)

2. for i  1 to n

3. si,0  0

4. for j  1 to m

5. s0,j  0

6. for i  1 to n

7. for j  1 to m

8. si-1,j
9. si,j  max si,j-1
10. si-1,j-1 + 1, if vi = wj
11. “ “ if si,j = si-1,j
• bi,j  “ “ if si,j = si,j-1
• “ “ if si,j = si-1,j-1 + 1

• return (sn,m, b)

9/18/2018 EECS 4425, Fall 2018 62

Now What?

• LCS(v,w) created the
alignment grid

• Now we need a way to
read the best
alignment of v and w

• Follow the arrows
backwards from sink

9/18/2018 EECS 4425, Fall 2018 63

Printing LCS: Backtracking
1. PrintLCS(b,v,i,j)
2. if i = 0 or j = 0
3. return
4. if bi,j = “ “
5. PrintLCS(b,v,i-1,j-1)
6. print vi
7. else
8. if bi,j = “ “
9. PrintLCS(b,v,i-1,j)
10. else
11. PrintLCS(b,v,i,j-1)

9/18/2018 EECS 4425, Fall 2018 64

LCS Runtime
• It takes O(nm) time to fill in the nxm

dynamic programming matrix.

• Why O(nm)? The pseudocode consists
of a nested “for” loop inside of another
“for” loop to set up a nxm matrix.

9/18/2018 EECS 4425, Fall 2018 65

Why does DP work?
• Avoids re-computing the same sub-

problems
• Limits the amount of work done in each

step

9/18/2018 EECS 4425, Fall 2018 66

When is DP applicable?

– Optimal substructure: Optimal
solution to problem (instance) contains
optimal solutions to sub-problems

– Overlapping sub-problems: Limited
number of distinct sub-problems,
repeated many many times

9/18/2018 EECS 4425, Fall 2018 67

Next: Sequence Alignment
• Global Alignment
• Scoring Matrices
• Local Alignment
• Alignment with Affine Gap Penalties

9/18/2018 EECS 4425, Fall 2018 68

From LCS to Alignment
• The Longest Common Subsequence (LCS) problem—

the simplest form of sequence alignment – allows only
insertions and deletions (no mismatches).

• In the LCS Problem, we scored 1 for matches and 0 for
indels

• Consider penalizing indels and mismatches with
negative scores

• Simplest scoring schema:
+1 : match premium
-μ : mismatch penalty
-σ : indel penalty

9/18/2018 EECS 4425, Fall 2018 69

Simple Scoring
• When mismatches are penalized by –μ,

indels are penalized by –σ,
and matches are rewarded with +1,
the resulting score is:

#matches – μ(#mismatches) – σ
(#indels)

9/18/2018 EECS 4425, Fall 2018 70

The Global Alignment Problem
Find the best alignment between two strings under a given

scoring schema

Input : Strings v and w and a scoring schema
Output : Alignment of maximum score

↑→ = -б
= 1 if match
= -µ if mismatch

si-1,j-1 +1 if vi = wj
si,j = max s i-1,j-1 -µ if vi ≠ wj

s i-1,j - σ
s i,j-1 - σ

µ : mismatch penalty
σ : indel penalty

9/18/2018 EECS 4425, Fall 2018 71

Scoring Matrices
To generalize scoring, consider a (4+1) x(4+1)

scoring matrix δ.
In the case of an amino acid sequence

alignment, the scoring matrix would be a
(20+1)x(20+1) size. The addition of 1 is to
include the score for comparison of a gap
character “-”.

This will simplify the algorithm as follows:
si-1,j-1 + δ (vi, wj)

si,j = max s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

9/18/2018 EECS 4425, Fall 2018 72

Measuring Similarity
• Measuring the extent of similarity

between two sequences
– Based on percent sequence identity
– Based on conservation

9/18/2018 EECS 4425, Fall 2018 73

Percent Sequence Identity
• The extent to which two nucleotide or

amino acid sequences are invariant

A C C T G A G – A G
A C G T G – G C A G

70% identical
mismatch

indel

9/18/2018 EECS 4425, Fall 2018 74

Making a Scoring Matrix
• Scoring matrices are created based on

biological evidence.
• Alignments can be thought of as two

sequences that differ due to mutations.
• Some of these mutations have little

effect on the protein’s function, therefore
some penalties, δ(vi , wj), will be less
harsh than others.

9/18/2018 EECS 4425, Fall 2018 75

Scoring Matrix: Example
A R N K

A 5 -2 -1 -1
R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although
R and K are different
amino acids, they
have a positive score.

• Why? They are both
positively charged
amino acids will not
greatly change
function of protein.

9/18/2018 EECS 4425, Fall 2018 76

Conservation
• Amino acid changes that tend to

preserve the physico-chemical
properties of the original residue
– Polar to polar

• aspartate  glutamate
– Nonpolar to nonpolar

• alanine  valine
– Similarly behaving residues

• leucine to isoleucine

9/18/2018 EECS 4425, Fall 2018 77

Scoring matrices
• Amino acid substitution matrices

– PAM
– BLOSUM

• DNA substitution matrices
– DNA is less conserved than protein

sequences
– Less effective to compare coding

regions at nucleotide level

	EECS 4425:�Introductory Computational Bioinformatics �Fall 2018
	Next: sequence alignment
	Local vs Global Alignment
	Dynamic programming (DP)
	Example
	Setting up DP in practice
	Number of paths in a grid
	Number of paths in a grid with blocked intersections
	Manhattan Tourist Problem (MTP)
	Manhattan Tourist Problem (MTP)
	Manhattan Tourist Problem: Formulation
	MTP: An Example
	MTP: Greedy Algorithm Is Not Optimal
	MTP: Recurrence
	MTP: Simple Recursive Program
	Manhattan Is Not A Perfect Grid
	Manhattan Is Not A Perfect Grid (cont’d)
	Traveling on the Grid
	DAG: Directed Acyclic Graph
	Topological Ordering
	Topological ordering
	Longest Path in DAG Problem
	Longest Path in DAG: Dynamic Programming
	Traversing the Manhattan Grid
	Slide Number 25
	Aligning DNA Sequences
	Aligning DNA Sequences - 2
	Longest Common Subsequence (LCS) – Alignment without Mismatches
	LCS: Example
	LCS Problem as Manhattan Tourist Problem
	Edit Graph for LCS Problem
	Edit Graph for LCS Problem
	Computing LCS
	Computing LCS (cont’d)
	Every Path in the Grid Corresponds to an Alignment
	Aligning Sequences without Insertions and Deletions: Hamming Distance
	Aligning Sequences with Insertions and Deletions
	Edit Distance
	Edit Distance vs Hamming Distance
	Edit Distance vs Hamming Distance
	Edit Distance vs Hamming Distance
	Edit Distance: Example
	Edit Distance: Example
	Edit Distance: Example (cont’d)
	Edit Distance: Example (cont’d)
	The Alignment Grid
	Alignment as a Path in the Edit Graph
	Alignments in Edit Graph (cont’d)
	Slide Number 50
	Alignment as a Path in the Edit Graph
	Alignment as a Path in the Edit Graph
	Alignment: Dynamic Programming
	Dynamic Programming Example
	Dynamic Programming Example
	Alignment: tracing paths
	Path tracing example
	Path tracing example
	Alignment: Dynamic Programming
	Alignment: Dynamic Programming
	LCS Algorithm
	Now What?
	Printing LCS: Backtracking
	LCS Runtime
	Why does DP work?
	When is DP applicable?
	Next: Sequence Alignment
	From LCS to Alignment
	Simple Scoring
	The Global Alignment Problem
	Scoring Matrices
	Measuring Similarity
	Percent Sequence Identity
	Making a Scoring Matrix
	Scoring Matrix: Example
	Conservation
	Scoring matrices

