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Next: sequence alignment
Why align?

Picture from http://www.sequence-alignment.com/
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Local vs Global Alignment
Picture from Wikipedia (By Yz cs5160 - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=54415549)
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Dynamic programming (DP)
• Typically used for optimization problems
• Often results in efficient algorithms
• Not applicable to all problems

Caveats:
• Need not yield poly-time algorithms
• No unique formulations for most 

problems
• May not rule out greedy algorithms
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Example
• Counting the number of shortest paths 

in a grid
• Counting the number of shortest paths 

in a grid with blocked intersections

• Finding paths in a weighted grid

• Sequence alignment
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Setting up DP in practice
• The optimal solution should be 

computable as a (recursive) function of 
the solution to sub-problems

• Solve sub-problems systematically and 
store solutions (to avoid duplication of 
work). 
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Number of paths in a grid
• Combinatorial approach
• DP approach: how can we decompose 

the problem into sub-problems ?
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Number of paths in a grid with 
blocked intersections

• Combinatorial approach?
• DP approach: how can we decompose 

the problem into sub-problems ?
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Manhattan Tourist Problem (MTP)

Imagine seeking a 
path (from source 
to sink) to travel 
(only eastward and 
southward) with the 
most number of 
attractions (*) in the 
Manhattan grid Sink
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Manhattan Tourist Problem (MTP)

Imagine seeking a 
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Manhattan Tourist Problem: Formulation

Goal: Find the best path in a weighted grid.

Input: A weighted grid G with two distinct 
vertices, one labeled “source” and the other 
labeled “sink”

Output: A best path in G from “source” to 
“sink”
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MTP: An Example
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MTP: Greedy Algorithm Is Not Optimal
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MTP: Recurrence

Computing the score for a point (i,j) by the 
recurrence relation:

si, j   = max si-1, j + weight of the edge between (i-1, j) and (i, j) 

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is n x m  for a n by m grid

(n = # of rows, m = # of columns)
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MTP: Simple Recursive Program
MT(n,m)

if n=0 or m=0
return Line(n,m)

x  MT(n-1,m)+
length of the edge from (n- 1,m) to 

(n,m)
y  MT(n,m-1)+

length of the edge from (n,m-1) to 
(n,m)

return max{x,y}

What’s wrong with this 
approach?
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Manhattan Is Not A Perfect Grid

What about diagonals?

• The score at point B is given by:

sB = max 
of

sA1 + weight of the edge  (A1, B)

sA2 + weight of the edge  (A2, B)

sA3 + weight of the edge  (A3, B)

B

A3

A1

A2
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Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the 
recurrence relation:

sx = max 

of

sy + weight of vertex (y, x) where 

y є Predecessors(x)

• Predecessors (x) – set of vertices that have  edges 
leading to x

•The running time for a graph G(V, E)                        
(V is the set of all vertices and E is the set of all edges)      
is O(E) since each edge is evaluated once
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Traveling on the Grid
•The only hitch is that one must decide on the  
order in which visit the vertices 

•By the time the vertex x is analyzed, the 
values sy for all its predecessors y should be 
computed – otherwise we are in trouble. 

•We need to traverse the vertices in some 
order

•Try to find such order for a directed cycle

???
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DAG: Directed Acyclic Graph
• Since Manhattan is not a perfect regular 

grid, we represent it as a DAG 
• DAG for Dressing in the morning problem
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Topological Ordering

• A numbering of vertices of the graph  is 
called topological ordering of the DAG if 
every edge of the DAG connects a vertex 
with a smaller label to a vertex with a 
larger label

• In other words, if vertices are positioned on 
a line in an increasing order of labels then 
all edges go from left to right. 
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Topological ordering
• 2 different topological orderings of the 

DAG
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Longest Path in DAG Problem

• Goal: Find a longest path between two 
vertices in a weighted DAG

• Input: A weighted DAG G with source and 
sink vertices

• Output: A longest path in G from source to 
sink
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Longest Path in DAG: Dynamic Programming

• Suppose vertex v has indegree 3 and 
predecessors {u1, u2, u3}

• Longest path to v from source is:

In General: 
sv = maxu (su + weight of edge from u to v) 

sv = max 
of

su1 + weight of edge from u1 to v
su2 + weight of edge from u2 to v
su3 + weight of edge from u3 to v
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Traversing the Manhattan Grid 

• 3 different strategies:
– a) Column by 

column
– b) Row by row
– c) Along diagonals

a) b)

c)
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Alignment: 2 row representation

Alignment :  2 * k matrix ( k > m, n )

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w
T

T

AT CT GAT
T GCAT A

v  :
w :

m = 7 
n = 6

4 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:
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Aligning DNA Sequences

V = ATCTGATG
W = TGCATAC

n = 8
m = 7

A T C T G A T G
T G C A T A C

V
W 

match

deletion
insertion

mismatch

indels

4
1
2
2

matches
mismatches
insertions
deletions
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Aligning DNA Sequences - 2
• Brute force is infeasible….
• Number of alignments of X[1..n],Y[1..m], 

n<m is (    )
• For m=n, this is about  22n/πn

m+n
n
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Longest Common Subsequence (LCS) –
Alignment without Mismatches

• Given two sequences 

v = v1 v2…vm and w = w1 w2…wn

• The LCS of v and w is a sequence of positions in 

v: 1 < i1 < i2 < … < it < m
and a sequence of positions in 

w: 1 < j1 < j2 < … < jt < n
such that it -th letter of v equals to jt-letter of w and t
is maximal
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LCS: Example

A T -- C T G A T C
-- T G C T -- A -- C

elements of v

elements of w
--

A
1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in red
positions in v:
positions in w: 

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D grid

0

0

(0,0)(1,0)(2,1)(2,2)(3,3)(3,4)(4,5)(5,5)(6,6)(7,6)(8,7)
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LCS Problem as Manhattan Tourist Problem
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Edit Graph for LCS Problem
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Edit Graph for LCS Problem

T
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Every path is a 
common 
subsequence.

Every diagonal 
edge adds an 
extra element to 
common 
subsequence

LCS Problem:
Find a path with 
maximum 
number of 
diagonal edges
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Computing LCS
Let vi =   prefix of v of length i:    v1 … vi

and wj =  prefix of w of length j:   w1 … wj

The length of LCS(vi,wj) is computed by:

si, j = max
si-1, j

si, j-1

si-1, j-1 + 1 if  vi = wj
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Computing LCS (cont’d)

si,j = MAX
si-1,j + 0 
si,j -1 + 0 
si-1,j -1 + 1,    if  vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0
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Every Path in the Grid Corresponds 
to an Alignment 
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Aligning Sequences without Insertions 
and Deletions: Hamming Distance

Given two DNA sequences v and w :

v  :

• The Hamming distance: dH(v, w)  =  8 is 
large but the sequences are very similar

AT AT AT AT
AT AT AT ATw :
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Aligning Sequences with 
Insertions and Deletions

v  : AT AT AT AT
AT AT AT ATw : --
--

By shifting one sequence over one position:

• The edit distance: dH(v, w)  =  2.

• Hamming distance neglects insertions and 
deletions in DNA
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Edit Distance
Levenshtein (1966) introduced edit distance
between two strings as the minimum number 
of elementary operations (insertions, deletions, 
and substitutions) to transform one string into 
the other

d(v,w) = MIN number of elementary operations
to transform v w
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Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance 
always compares
i-th letter of v with
i-th letter of w

Hamming distance:
d(v, w)=8

Computing Hamming distance
is a trivial task.
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Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance: Edit distance: 
d(v, w)=8 d(v, w)=2

Computing Hamming distance             Computing edit distance
is a trivial task                             is a non-trivial task

W = TATATATA
Just one shift

Make it all line up

V = - ATATATAT

Hamming distance 
always compares
i-th letter of v with
i-th letter of w

Edit distance 
may compare
i-th letter of v with
j-th letter of w
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Edit Distance vs Hamming Distance

V = ATATATAT
W = TATATATA

Hamming distance: Edit distance: 
d(v, w)=8 d(v, w)=2

(one insertion and one deletion)

How to find what j goes with what i ???

W = TATATATA

V = - ATATATAT

Hamming distance 
always compares
i-th letter of v with
i-th letter of w

Edit distance 
may compare
i-th letter of v with
j-th letter of w
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Edit Distance: Example
TGCATAT  ATCCGAT in 5 steps

TGCATAT  (delete last T)
TGCATA  (delete last A)
TGCAT        (insert A at front)
ATGCAT      (substitute C for 3rd G)
ATCCAT      (insert G before last A) 
ATCCGAT       (Done)
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Edit Distance: Example
TGCATAT  ATCCGAT in 5 steps

TGCATAT  (delete last T)
TGCATA  (delete last A)
TGCAT        (insert A at front)
ATGCAT      (substitute C for 3rd G)
ATCCAT      (insert G before last A) 
ATCCGAT       (Done)
What is the edit distance?  5?
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Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT    (insert A at front)
ATGCATAT  (delete 6th T)
ATGCATA    (substitute G for 5th A)
ATGCGTA    (substitute C for 3rd G)
ATCCGAT (Done)
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Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT    (insert A at front)
ATGCATAT  (delete 6th T)
ATGCATA    (substitute G for 5th A)
ATGCGTA    (substitute C for 3rd G)
ATCCGAT (Done)

Can it be done in 3 steps???
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The Alignment Grid 

– Every alignment 
path is from 
source to sink
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Alignment as a Path in the Edit Graph

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7  

(0,0) , (1,1) , (2,2), (2,3), 
(3,4), (4,5), (5,5), (6,6), 
(7,6), (7,7)

- Corresponding path -
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Alignments in Edit Graph (cont’d)

and       represent 
indels in v and w with 
score 0.

represent matches 
with score 1.
• The score of the 
alignment path is 5.
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Alignment as a Path in the Edit Graph

Every path in the edit 
graph corresponds to 
an alignment:
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Alignment as a Path in the Edit Graph
Old Alignment

0122345677
v=  AT_GTTAT_
w=  ATCGT_A_C

0123455667

New Alignment
0122345677

v=  AT_GTTAT_
w=  ATCG_TA_C

0123445667
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Alignment as a Path in the Edit Graph

0122345677
v=  AT_GTTAT_
w=  ATCGT_A_C

0123455667

(0,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6), 
(7,6), (7,7)
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Alignment: Dynamic Programming

si,j =           si-1, j-1+1 if vi = wj

max            si-1, j

si, j-1
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Dynamic Programming 
Example

Initialize 1st row and 
1st column to be all 
zeroes. 

Or, to be more 
precise, initialize 0th

row and 0th column to 
be all zeroes.
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Dynamic Programming 
Example

Si,j =     Si-1, j-1

max     Si-1, j

Si, j-1

value from NW +1, if vi = wj
 value from North (top)
 value from West (left)
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Alignment: tracing paths
Arrows              show where the score 

originated from.   

if from the top

if from the left

if vi = wj
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Path tracing example

Find a match in row and column 2.

i=2, j=2,5 is a match (T).              

j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1 
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1
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Path tracing example

Continuing with the 
dynamic programming  
algorithm gives this 
result.



9/18/2018 EECS 4425, Fall 2018 59

Alignment: Dynamic Programming

si,j =           si-1, j-1+1 if vi = wj

max            si-1, j

si, j-1
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Alignment: Dynamic Programming

si,j =           si-1, j-1+1 if vi = wj

max            si-1, j+0

si, j-1+0

This recurrence corresponds to the Manhattan Tourist 
problem (three incoming edges into a  vertex) with all 
horizontal and vertical edges weighted by zero.
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LCS Algorithm
1. LCS(v,w)

2. for i  1 to n

3. si,0  0

4. for j  1 to m

5. s0,j  0

6. for i  1 to n

7. for j  1 to m

8. si-1,j
9. si,j  max   si,j-1
10. si-1,j-1 + 1, if vi = wj
11. “   “   if si,j = si-1,j
• bi,j  “   “   if si,j = si,j-1
• “   “  if si,j = si-1,j-1 + 1

• return (sn,m, b)
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Now What?

• LCS(v,w) created the 
alignment grid

• Now we need a way to 
read the best 
alignment of v and w

• Follow the arrows 
backwards from sink
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Printing LCS: Backtracking
1. PrintLCS(b,v,i,j)
2. if i = 0 or j = 0
3. return
4. if bi,j = “     “
5. PrintLCS(b,v,i-1,j-1)
6. print vi
7. else
8. if bi,j = “     “
9. PrintLCS(b,v,i-1,j)
10. else
11. PrintLCS(b,v,i,j-1)
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LCS Runtime
• It takes O(nm) time to fill in the nxm

dynamic programming matrix.

• Why O(nm)?  The pseudocode consists 
of a nested “for” loop inside of another 
“for” loop to set up a nxm matrix. 
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Why does DP work?
• Avoids re-computing the same sub-

problems
• Limits the amount of work done in each 

step
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When is DP applicable?

– Optimal substructure: Optimal 
solution to problem (instance) contains 
optimal solutions to sub-problems

– Overlapping sub-problems: Limited 
number of distinct sub-problems, 
repeated many many times
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Next: Sequence Alignment
• Global Alignment 
• Scoring Matrices
• Local Alignment
• Alignment with Affine Gap Penalties
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From LCS to Alignment
• The Longest Common Subsequence (LCS) problem—

the simplest form of sequence alignment – allows only 
insertions and deletions (no mismatches). 

• In the LCS Problem, we scored 1 for matches and 0 for 
indels

• Consider penalizing indels and mismatches with 
negative scores

• Simplest scoring schema: 
+1 : match premium
-μ : mismatch penalty
-σ : indel penalty
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Simple Scoring
• When mismatches are penalized by –μ, 

indels are penalized by –σ, 
and matches are rewarded with +1, 
the resulting score is:

#matches – μ(#mismatches) – σ
(#indels)
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The Global Alignment Problem
Find the best alignment between two strings under a given 

scoring schema

Input : Strings v and w and a scoring schema
Output : Alignment of maximum score

↑→ = -б
= 1 if match
= -µ if mismatch

si-1,j-1 +1 if vi = wj
si,j =  max      s i-1,j-1 -µ if vi ≠ wj

s i-1,j - σ
s i,j-1 - σ

µ : mismatch penalty
σ : indel penalty
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Scoring Matrices 
To generalize scoring, consider a (4+1) x(4+1) 

scoring matrix δ. 
In the case of an amino acid sequence 

alignment, the scoring matrix would be a 
(20+1)x(20+1) size.  The addition of 1 is to 
include the score for comparison of a gap 
character “-”.

This will simplify the algorithm as follows:
si-1,j-1 + δ (vi, wj)

si,j =    max      s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)
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Measuring Similarity
• Measuring the extent of similarity 

between two sequences
– Based on percent sequence identity
– Based on conservation
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Percent Sequence Identity
• The extent to which two nucleotide or 

amino acid sequences are invariant

A C  C  T G  A  G  – A G 
A C  G  T G  – G  C  A G

70% identical
mismatch

indel
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Making a Scoring Matrix
• Scoring matrices are created based on 

biological evidence. 
• Alignments can be thought of as two 

sequences that differ due to mutations.  
• Some of these mutations have little 

effect on the protein’s function, therefore 
some penalties, δ(vi , wj), will be less 
harsh than others.
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Scoring Matrix: Example
A R N K

A 5 -2 -1 -1
R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although 
R and K are different 
amino acids, they 
have a positive score.

• Why? They are both 
positively charged 
amino acids will not 
greatly change 
function of protein.
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Conservation
• Amino acid changes that tend to 

preserve the physico-chemical 
properties of the original residue
– Polar to polar

• aspartate  glutamate
– Nonpolar to nonpolar

• alanine  valine
– Similarly behaving residues

• leucine to isoleucine
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Scoring matrices
• Amino acid substitution matrices

– PAM
– BLOSUM

• DNA substitution matrices
– DNA is less conserved than protein 

sequences
– Less effective to compare coding 

regions at nucleotide level
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