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Next
Markov chains and hidden Markov models

Some of the following slides are based on slides from 
www.bioalgorithms.info
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Markov chains
• Simplest probabilistic model with states
• Finite state machine with probabilistic 

state transitions
• Useful for modeling many, many 

systems 
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Example 0
• Random walks on the integers
• Random walks on a cube
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Example 1
• Modeling exons and introns
• What is the probability of getting a T 

after a A?
• Differentiates exons, introns
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Example 2
• The casino problem
• Switch probabilistically between a fair 

coin F and an unfair (biased) coin B
• Thus, we define the probabilities:

– P(H|F) = P(T|F) = ½
– P(H|B) = ¾, P(T|B) = ¼
– The crooked dealer changes between 

F and B with probability  10%
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Example 3
• CpG islands 
• CG dinucleotide typically modified by 

methylation; then the C is more likely to 
mutate to a G

• Methylation suppressed in short 
stretches (clusters), typically around 
genes, and CpG occurs more frequently 
in these islands

• So, finding the CpG islands in a 
genome is an important problem
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The Markov property
• “Memoryless” state transitions
• Memoryless vs stateless
• Path to current node has no influence 

on current (or future) transitions
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Probabilities of paths
• Paths are sequences of states
• The Markovian property simplifies the 

equation
P(x1 x2…xn) = P(xn| x1 x2…xn-1) P(x1 x2…xn-1)

= P(xn|xn-1) P(x1 x2…xn-1)
= a n-1,n P(x1 x2…xn-1)
= ….
= P(x1) a1,2 … a n-3,n-2 a n-2,n-1 a n-1,n
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Graph-theoretic formulation
• Directed graph
• Nodes are states
• Edge weights are transition probabilities
• Graph structure determines properties 

of Chain
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Linear Algebraic formulation
• Relationship between the state 

probability vectors in successive 
timesteps

• X t+1 = A X t
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Fundamental questions
• When is there a “steady state”?
• What is the state probability vector at 

steady state?
• How quickly does the Markov chain 

approach steady state?
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Answers
• Existence of steady state can be 

formulated in terms of graph properties 
(e.g. all pairs reachable from each 
other)

• Steady state probability easier in terms 
of linear algebraic formulation: 

solve π = A π
• Speed of convergence: second largest 

eigenvalue of A
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Hidden Markov Models (HMM)
• Determining when the casino switches 

from fair to unfair coins or vice versa
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Problem…
Fair Bet 
Casino 
Problem
Any observed 
outcome of coin 
tosses could 
have been 
generated by 
any sequence 
of states!

Need to incorporate a 
way to grade different 
sequences differently.

Decoding Problem
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P(x|fair coin) vs. P(x|biased coin)

• Suppose first that dealer never changes 
coins. Some definitions:
– P(x|fair coin): prob. of the dealer using 
the F coin and generating the outcome x.
– P(x|biased coin): prob. of the dealer 

using  the B coin and generating 
outcome x.
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P(x|fair coin) vs. P(x|biased coin)

• P(x|fair coin)=P(x1…xn|fair coin)
Πi=1,n p (xi|fair coin)= (1/2)n

• P(x|biased coin)= P(x1…xn|biased coin)=

Πi=1,n p (xi|biased coin)=(3/4)k(1/4)n-k= 3k/4n

– k - the number of Heads in x.
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P(x|fair coin) vs. P(x|biased 
coin)

• P(x|fair coin) = P(x|biased coin)
• 1/2n = 3k/4n

• 2n = 3k

• n = k log23
• when          k = n / log23 (k ~ 0.67n)



12/4/2018 EECS 4425, Fall 2018 19

Log-odds Ratio
• We define log-odds ratio as follows:

log2(P(x|fair coin) / P(x|biased coin)) 
= Σk

i=1 log2(p+(xi) / p-(xi))
= n – k log23
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Computing Log-odds Ratio in Sliding 
Windows

x1x2x3x4x5x6x7x8…xn

Consider a sliding window of the outcome 
sequence.  Find the log-odds for this short 
window.

Log-odds value

0

Fair coin most likely 
used

Biased coin most likely 
used
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Hidden Markov Model (HMM)
• Can be viewed as an abstract machine with k 

hidden states that emits symbols from an 
alphabet Σ.

• Each state has its own probability distribution, and 
the machine switches between states according 
to this probability distribution.

• While in a certain state, the machine makes 2 
decisions:
– What state should I move to next?
– What symbol - from the alphabet Σ - should I 

emit?
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Why “Hidden”?
• Observers can see the emitted symbols 

of an HMM but have no ability to know 
which state the HMM is currently in.

• Thus, the goal is to infer the most likely 
hidden states of an HMM based on the 
given sequence of emitted symbols.
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HMM Parameters
Σ: set of emission characters.

Ex.: Σ = {H, T} for coin tossing
Σ = {1, 2, 3, 4, 5, 6} for dice 

tossing

Q: set of hidden states, each emitting 
symbols from Σ.

Q={F,B} for coin tossing
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HMM Parameters (cont’d)

A = (akl): a |Q| x |Q| matrix of probability of 
changing from state k to state l.

aFF = 0.9     aFB = 0.1
aBF = 0.1     aBB = 0.9

E = (ek(b)): a |Q| x |Σ| matrix of probability 
of emitting symbol b while being in state 
k.

eF(0) = ½     eF(1) = ½ 
eB(0) = ¼     eB(1) = ¾ 
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HMM for Fair Bet Casino
• The Fair Bet Casino in HMM terms:

Σ = {0, 1} (0 for Tails and 1 Heads)
Q = {F,B} – F for Fair & B for Biased coin.

• Transition Probabilities A *** Emission Probabilities 
E Fair Biased

Fair aFF = 0.9 aFB = 0.1

Biased aBF = 0.1 aBB = 0.9

Tails(0) Heads(1
)

Fair eF(0) = 
½ 

eF(1) = 
½

Biased eB(0) = 
¼

eB(1) = 
¾
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HMM for Fair Bet Casino (cont’d)

HMM model for the Fair Bet Casino Problem
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Hidden Paths
• A path π = π1… πn in the HMM is defined as a 

sequence of states.
• Consider path π = FFFBBBBBFFF and sequence 

x = 01011101001

x 0     1     0    1     1      1    0      1    0     0     1

π      =        F   F   F   B   B   B   B   B   F   F   F
P(xi|πi) ½   ½    ½    ¾   ¾    ¾    ¼ ¾    ½   ½   ½ 
P(πi-1  πi) ½   9/10

9/10      
1/10      

9/10      
9/10      

9/10     
9/10    

1/10     
9/10     

9/10

Transition probability from state πi-1 to state πi

Probability that xi was emitted from state πi
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P(x|π) Calculation
• P(x|π): Probability that sequence x was 

generated by the path π:
n

P(x|π) = P(π0→ π1) · Π P(xi| πi) · P(πi → 
πi+1)

i=1

= a π0, π1 · Π e πi (xi) · a πi, πi+1
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P(x|π) Calculation
• P(x|π): Probability that sequence x was 

generated by the path π:
n

P(x|π) = P(π0→ π1) · Π P(xi| πi) · P(πi → πi+1)
i=1

= a π0, π1 · Π e πi (xi) · a πi, πi+1

=             Π e πi+1 (xi+1) · a πi, πi+1
if we count from i=0 instead of i=1
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Decoding Problem
• Goal: Find an optimal hidden path of 

states given observations.

• Input: Sequence of observations x = 
x1…xn generated by an HMM M(Σ, Q, A, 
E)

• Output: A path that maximizes P(x|π)
over all possible paths π.
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Building Manhattan for Decoding Problem

• Andrew Viterbi used the Manhattan grid 
model to solve the Decoding Problem.

• Every choice of π = π1… πn 
corresponds to a path in the graph.

• The only valid direction in the graph is 
eastward.

• This graph has |Q|2(n-1) edges.
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Edit Graph for Decoding Problem
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Decoding Problem vs. Alignment 
Problem

Valid directions in the 
alignment problem.

Valid directions in the 
decoding problem.
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Decoding Problem as Finding a 
Longest Path in a DAG

• The Decoding Problem is reduced to 
finding a longest path in the directed 
acyclic graph (DAG) above.

• Notes: the length of the path is defined as 
the product of its edges’ weights, not the
sum.
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Decoding Problem (cont’d)

• Every path in the graph has the probability 
P(x|π).

• The Viterbi algorithm finds the path that 
maximizes P(x|π) among all possible paths.

• The Viterbi algorithm runs in O(n|Q|2) time.
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Decoding Problem: weights of 
edges

w

The weight w is given by:
???

(k, i) (l, i+1)
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Decoding Problem: weights of 
edges

w

The weight w is given by:
??

(k, i) (l, i+1)

n
P(x|π) = Π e πi+1 (xi+1) . a πi, 
πi+1 i=0
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Decoding Problem: weights of 
edges

w

The weight w is given by:
?

(k, i) (l, i+1)

i-th term = e πi+1 (xi+1) . a πi, πi+1
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Decoding Problem: weights of 
edges

w

The weight  w=el(xi+1). akl

(k, i) (l, i+1)

i-th term = e πi (xi) . a πi, πi+1 = el(xi+1). akl for  πi =k, 
πi+1=l
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Decoding Problem and Dynamic 
Programming

sl,i+1 = maxk Є Q {sk,i · wt of edge between (k,i) and
(l,i+1)}

= maxk Є Q {sk,i · akl · el (xi+1) }
= el (xi+1) · maxk Є Q {sk,i · akl}
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Decoding Problem (cont’d)

• Initialization:
– sbegin,0 = 1
– sk,0 = 0 for k ≠ begin.

• Let π* be the optimal path. Then,

P(x|π*) = maxk Є Q {sk,n . ak,end}
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Viterbi Algorithm
• The value of the product can become 

extremely small, which leads to 
overflowing.

• To avoid overflowing, use log value 
instead. 

sk,i+1= logel(xi+1) + max k Є Q {sk,i  + log(akl)}
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Forward-Backward Problem

Given: a sequence of coin tosses 
generated by an HMM.
Goal: find the probability that the dealer 
was using a biased coin at a particular 
time.
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Forward Algorithm
• Define fk,i (forward probability) as the 

probability of emitting the prefix x1…xi
and reaching the state π = k.

• The recurrence for the forward 
algorithm:

fk,i = ek(xi) . Σ fl,i-1 . alk
l Є Q
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Backward Algorithm
• However, forward probability is not the 

only factor affecting P(πi = k|x).

• The sequence of transitions and 
emissions that the HMM undergoes 
between πi+1 and πn also affect P(πi = 
k|x).

forward      xi backward
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Backward Algorithm (cont’d)

• Define backward probability bk,i as the 
probability of being in state πi = k and 
emitting the suffix xi+1…xn.

• The recurrence for the backward algorithm:

bk,i = Σ el(xi+1) . bl,i+1 . akl  
l Є Q
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Backward-Forward Algorithm
• The probability that the dealer used a 

biased coin at any moment i:

P(x, πi = k)       fk(i) . bk(i)
P(πi = k|x) = _______________ = ______________

P(x)                 P(x)

P(x) is the sum of P(x, πi = k) over all k
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Profile Representation of Protein Families

Aligned DNA sequences can be represented by  a 
4 ·n profile matrix reflecting the frequencies 
of nucleotides in every aligned position.

Protein family can be represented by a 20·n profile 
representing frequencies of amino acids.
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Profiles and HMMs

• HMMs can also be used for aligning a 
sequence against a profile 
representing 
protein family.

• A 20·n profile P corresponds to n 
sequentially linked match states 
M1,…,Mn in the profile HMM of P.
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Profile HMM

A profile HMM
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Building a profile HMM
• Multiple alignment is used to construct the HMM 

model.
• Assign each column to a Match state in HMM. 

Add Insertion and Deletion state. 
• Estimate the emission probabilities according to 

amino acid counts in column. Different positions 
in the protein will have different emission 
probabilities.

• Estimate the transition probabilities between 
Match, Deletion and Insertion states

• The HMM model gets trained to derive the 
optimal parameters.
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States of Profile HMM

• Match states    M1…Mn (plus begin/end
states) 

• Insertion states I0I1…In
• Deletion states D1…Dn
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Transition Probabilities in Profile 
HMM

• log(aMI)+log(aIM) = gap initiation penalty

• log(aII) = gap extension penalty
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Emission Probabilities in Profile 
HMM

• Probability of emitting a symbol a at an 
insertion state Ij:

eIj(a) = p(a)

where p(a) is the frequency of the 
occurrence of the symbol a in all the 
sequences.
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Profile HMM Alignment
• Define vM

j (i) as the logarithmic 
likelihood score of the best path for 
matching x1..xi to profile HMM ending 
with xi emitted by the state Mj.

• vI
j (i) and vD

j (i) are defined similarly.
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Profile HMM Alignment: Dynamic 
Programming

vM
j-1(i-1) + log(aMj-1,Mj )

vM
j(i) = log (eMj(xi)/p(xi)) + max       vI

j-1(i-1) + log(aIj-1,Mj )
vD

j-1(i-1) + log(aDj-1,Mj )

vM
j(i-1) + log(aMj, Ij)

vI
j(i) = log (eIj(xi)/p(xi)) + max        vI

j(i-1) + log(aIj, Ij)
vD

j(i-1) + log(aDj, Ij)
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Paths in Edit Graph and Profile 
HMM

A path through an edit graph and the 
corresponding path through a profile HMM
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HMM Parameter Estimation
• So far, we have assumed that the 

transition and emission probabilities are 
known.

• However, in most HMM applications, the 
probabilities are not known.  It’s very 
hard to estimate the probabilities.
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HMM Parameter Estimation Problem

Given
 HMM with states and alphabet (emission 

characters)
 Independent training sequences x1, … xm

Find HMM parameters Θ (that is, akl, ek(b)) 
that maximize 

P(x1, …, xm | Θ)
the joint probability of the training sequences. 
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Maximize the likelihood
P(x1, …, xm | Θ) as a function of Θ is called the 

likelihood of the model.
The training sequences are assumed independent, 

therefore
P(x1, …, xm | Θ) = Πi P(xi | Θ)

The parameter estimation problem seeks Θ that 
realizes

In practice the log likelihood is computed to avoid 
underflow errors

∏ Θ
Θ i

ixP )|(max
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Two situations

Known paths for training sequences
CpG islands marked on training sequences
One evening the casino dealer allows us to 
see when he changes dice

Unknown paths 
CpG islands are not marked
Do not see when the casino dealer changes 
dice
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Known paths
Akl = # of times each k → l is taken in the 

training sequences
Ek(b) = # of times b is emitted from state k in 

the training sequences
Compute akl and ek(b) as maximum likelihood 

estimators:

∑

∑
=

=

'

'
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)'(/)()(

/

b
kkk

l
klklkl

bEbEbe

AAa
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Pseudocounts
 Some state k may not appear in any of the 

training sequences. This means Akl = 0 for 
every state l and akl cannot be computed with 
the given equation.

 To avoid this overfitting use predetermined 
pseudocounts rkl and rk(b).

Akl = # of transitions k→l + rkl
Ek(b) = # of emissions of b from k + rk(b)

The pseudocounts reflect our prior biases about 
the probability values.
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Unknown paths: Baum-Welch
Idea:
1. Guess initial values for parameters.

art and experience, not science
2. Estimate new (better) values for parameters.

how ?
3. Repeat until stopping criteria is met.

what criteria ?
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Better values for parameters

Would need the Akl and Ek(b) values but cannot 
count (the path is unknown) and do not want 
to use a most probable path.

For all states k,l, symbol b and training 
sequence x

Compute Akl and Ek(b) as expected 
values, given the current parameters
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Notation
For any sequence of characters x

emitted along some unknown path
π, denote by πi = k the assumption 
that the state at position i (in which 
xi is emitted) is k.
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The Baum-Welch algorithm
Initialization:

Pick the best-guess for model parameters
(or arbitrary)

Iteration:
1. Forward for each x
2. Backward for each x
3. Calculate Akl, Ek(b)
4. Calculate new akl, ek(b)
5. Calculate new log-likelihood

Until log-likelihood does not change much
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Baum-Welch  analysis 

Log-likelihood is increased by iterations
Baum-Welch is a particular case of the EM 
(expectation maximization) algorithm
Convergence to local maximum. Choice of 
initial parameters determines local 
maximum to which the algorithm converges
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