
1 EECS 3401 F 2018

flow of control, negation,
cut, 2nd order programming,
tail recursion

Yves Lespérance
Adapted from Peter Roosen-Runge

2 EECS 3401 F 2018

simplicity hides complexity

◆  simple and/or composition of goals
hides complex control patterns

◆  not easily represented by traditional
flowcharts

◆  may not be a bad thing
◆  want important aspects of logic and

algorithm to be clearly represented and
irrelevant details to be left out

3 EECS 3401 F 2018

procedural and declarative
semantics

◆  Prolog programs have both a
declarative/logical semantics and a
procedural semantics

◆  declarative semantics: query holds if it
is a logical consequence of the program

◆  procedural semantics: query succeeds if
a matching fact or rule succeeds, etc.
-  defines order in which goals are attempted,

what happens when they fail, etc.

4 EECS 3401 F 2018

and & or

◆  Prolog’s and (,) & or (; and alternative
facts and rules that match a goal) are
not purely logical operations

◆  often important to consider the order in
which goals are attempted
-  left to right for “,” and “;”
-  top to bottom for alternative facts/rules

5 EECS 3401 F 2018

and is not always
commutative, e.g.

◆  sublistV1(S, L):- append(_, L1, L),
 append(S, _, L1).

 i.e. S is a sublist of L if L1 is any suffix of L
and S is a prefix of L1

◆  sublistV2(S, L):- append(S, _, L1),
 append(_, L1 ,L).

 i.e. S is a sublist of L if S is a prefix of some
list L1 and L1 is any suffix of L

6 EECS 3401 F 2018

and is not always
commutative, e.g.

◆  ?- sublistV1([c,b], [a, b, c, d]).
false.

◆  sublistV2([c,b], [a, b, c, d]).
ERROR: Out of global stack
why?

7 EECS 3401 F 2018

uses of or (;)

◆  or “;” can be used to regroup several
rules with the same head

◆  e.g.
 parent(X,Y):- mother(X,Y); father(X,Y).

◆  can improve efficiency by avoiding
redoing unification

◆  “;” has lower precedence than “,”

8 EECS 3401 F 2018

Prolog negation

◆  Prolog uses “\+”, “not provable” or
negation as failure

◆  different from logical negation
◆  ?- \+ goal. succeeds if ?- goal. fails
◆  interpreting \+ as negation amounts to

making the closed-world assumption

9 EECS 3401 F 2018

example

◆  Given program:
 human(ulysses). human(penelope).
 mortal(X):- human(X).

◆  ?- \+ human(jason).
 Yes

◆  In logic, the axioms corresponding to
the program don’t entail
¬Human(Jason).

10 EECS 3401 F 2018

semantics of free variables in
\+ is “funny”

◆  normally, variables in a query are
existentially quantified from outside
 e.g. ?- p(X), q(X). represents “there
exists x such that P(x) & Q(x)”

◆  but ?- \+ (p(X), q(X)). represents “it is
not the case that there exists x such
that P(x) & Q(x)”

11 EECS 3401 F 2018

To avoid this problem

◆  \+ works correctly if its argument is
instantiated

◆  so for example in
 intersect([X|L], Y, I):-
 \+ member(X,Y), intersect(L,Y,I).
 X and Y should be instantiated

12 EECS 3401 F 2018

example

◆  Given program:
 animal(cat). vegetable(turnip).

◆  ?- \+ animal(X), vegetable(X).
 No why?

◆  ?- vegetable(X),\+ animal(X).
 X = turnip why?

13 EECS 3401 F 2018

guarding the “else”

◆  can’t rely on implicit negation in
predicates that can be redone

◆  in predicates with alternative rules,
each rule should be logically valid (if
backtracking can occur)

◆  safest thing is repeating the condition
with negation

14 EECS 3401 F 2018

e.g. intersect

◆  intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
 intersect([X|L], Y, I):-
 \+ member(X,Y), intersect(L, Y, I).
 is OK.

15 EECS 3401 F 2018

e.g. intersect

◆  intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
 intersect([_|L], Y, I):-intersect(L, Y, I).
 is buggy.
 ?- intersect([a], [b, a], []). succeeds.
 why?

16 EECS 3401 F 2018

inhibiting backtracking

◆  the cut operator “!” is used to control
backtracking

◆  If the goal G unifies with H in program
 H :- ….
 H :- G1,…,Gi, !, Gj,…, Gk.
 H :- … .
 and gets past the !, and Gj,…, Gk fails,
 then the parent goal G immediately fails. G1,…,
Gi won’t be retried and the subsequent
matching rules won’t be attempted.

17 EECS 3401 F 2018

Using ! e.g. intersect

◆  cut can be used to improve efficiency,
e.g.
 intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
 intersect(([X|L], Y, I):-
 \+ member(X,Y), intersect(L, Y, I).
 retests member(X,Y) twice

18 EECS 3401 F 2018

e.g. intersect

◆  using cut, we can avoid this
 intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), !, intersect(L, Y, I).
 intersect([_|L], Y, I):-intersect(L, Y, I).

◆  means that the last 2 rules are a
conditional branch

19 EECS 3401 F 2018

cut can be used to define
useful features

◆  If goal G should be false when C1,…, Cn
holds, can write
 G :- C1,…, Cn, !, fail.

◆  not provable can be defined using cut
 \+ G :- G, !, fail.
 \+ G.

20 EECS 3401 F 2018

control predicates

◆  true (really success), e.g.
 G :- Cond1; Cond2; true.

◆  fail (opposite of true)
◆  repeat (always succeeds, infinite

number of choice points)
 loopUntilNoMore:- repeat, doStuff,

 checkNoMore.
 but tail recursion is cleaner, e.g.
 loop :- doStuff, (checkNoMore; loop).

21 EECS 3401 F 2018

forcing all solutions

test :- member(X, [1, 2, 3]),
 nl, print(X),
 fail.

% no alternative sols for print(X) and nl
% but member has alternative sols
?- test.
1
2
3
No

22 EECS 3401 F 2018

2nd order features: bagof &
setof

◆  ?- bagof(T,G,L). instantiates L to the list
of all instances of T such for which G
succeeds, e.g.
 ?- bagof(X,(member(X,[2,5,7,3,5]),X >= 3),L).
 X = _G172
 L = [5, 7, 3, 5]
 Yes

23 EECS 3401 F 2018

2nd order features: bagof &
setof

◆  setof is similar to bagof except that it removes
duplicates from the list, e.g.
 ?- setof(X,(member(X,[2,5,7,3,5]),X >= 3),L).
 X = _G172
 L = [3, 5, 7]
 Yes

◆  can collect values of several variables, e.g.
 ?- bagof(pair(X,Y),(member(X,[a,b]),member(Y,[c,d])),
 L).
 X = _G157
 Y = _G158
 L = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)]
 Yes

24 EECS 3401 F 2018

2nd order features

◆  setof and bagof are called 2nd order
features because they are queries about
the value of a set or relation

◆  in logic, this is quantification over a set
or relation

◆  not allowed in first order logic, but can
be done in 2nd order logic

25 EECS 3401 F 2018

entering and leaving

◆  Trace steps are labelled:
Call: enter the procedure
Exit: exit successfully with bindings for

variable
Fail: exit unsuccessfully
Redo: look for an alternative solution

◆  4 ports model

26 EECS 3401 F 2018

Tail recursion optimization in
Prolog

◆  suppose have goal A and rule A’ :- B1,
B2, …, Bn-1, Bn. and A unifies with A’
and B2, …, Bn-1 succeed

◆  if there are no alternatives left for A and
for B2, …, Bn-1 then can simply replace A
by Bn on execution stack

◆  in such cases the predicate A is tail
recursive

◆  nothing left to do in A when Bn succeeds
or fails/backtracks, so we can replace
call stack frame for A by Bn’s; recursion
can be as space efficient as iteration

27 EECS 3401 F 2018

e.g. factorial

◆  simple implementation:
 fact(0,1).
 fact(N,F):- N > 0, N1 is N – 1,
 fact(N1,F1), F is N * F1.

◆  close to mathematical definition
◆  but not tail-recursive
◆  requires O(N) in stack space

28 EECS 3401 F 2018

e.g. factorial

◆  better implementation:
 fact(N,F):- fact1(N,1,F).
 fact1(0,F,F).
 fact1(N,T,F):- N > 0, T1 is T * N,
 N1 is N – 1, fact1(N1,T1,F).

◆  uses accumulator
◆  is tail-recursive and each call can

replace the previous call
◆  can prove correctness

29 EECS 3401 F 2018

e.g. append

◆  append([],L,L).
 append([X|R],L,[X|RL]):-
 append(R,L,RL).

◆  append is tail recursive if first argument is
fully instantiated

◆  Prolog must detect the fact that there are no
alternatives left; may depend on clause
indexing mechanism used

◆  use of unification means more relations are tail
recursive in Prolog than in other languages

30 EECS 3401 F 2018

split

split([],[],[]).
split([X],[X],[]).
split([X1,X2|R],[X1|R1],[X2|R2]):-
 split(R,R1,R2).

Tail recursive!

31 EECS 3401 F 2018

merge

merge([],L,L).
merge(L,[],L).
merge([X1|R1],[X2|R2],[X1|R]):-

 order(X1,X2), merge(R1,[X2|R2],R).
merge([X1|R1],[X2|R2],[X2|R]):-

 not order(X1,X2), merge([X1|R1],R2,R).

Tail recursive, but lack of alternatives may be

hard to detect (can use cut to simplify).

32 EECS 3401 F 2018

merge sort

mergesort([],[]).
mergesort([X],[X]).
mergesort(L,S):- split(L,L1,L2),
 mergesort(L1,S1),
 mergesort(L2,S2),
 merge(S1,S2,S).

33 EECS 3401 F 2018

for more on tail recursion

◆  see Sterling & Shapiro The Art of Prolog
Sec. 11.2

34 EECS 3401 F 2018

Example: Finite State
Automata

35 EECS 3401 F 2018

finite state automata

◆  a finite state automaton (Σ, S, s0, δ, F)
is a representation of a machine as a
-  finite set of states S
-  a state transition relation/table δ
- mapping current state & input symbol

from alphabet Σ to the next state
-  an initial state s0

-  a set of final states F

36 EECS 3401 F 2018

accepting an input

◆  a fsa accepts an input sequence from
an alphabet Σ if, starting in the
designated starting state, scanning the
input sequence leaves the automaton in
a final state

◆  sometimes called recognition
◆  e.g. automaton that accepts strings of

x’s and y’s with an even number of x’s
and an odd number of y’s

37 EECS 3401 F 2018

example

◆  automaton that accepts strings of x’s
and y’s with an even number of x’s and
an odd number of y’s

◆  idea: keep track of whether we have
seen even number of x’s and y’s

◆  S = {ee, eo, oe, oo}
◆  s0 = ee
◆  δ = {(ee, x, oe), (ee, y, eo),…}
◆  F = {eo}

38 EECS 3401 F 2018

implementation

◆  fsa(Input) succeeds if and only if the fsa
accepts or recognizes the sequence (list)
Input.

◆  initial state represented by a predicate
-  initial_state(State)

◆  final states represented by a predicate
-  final_states(List)

◆  state transition table represented by a
predicate
-  next_state(State, InputSymbol, NextState)

◆  note: next_state need not be a function

39 EECS 3401 F 2018

implementing fsa/1

◆  fsa(Input) :- initial_state(S), scan(Input, S).
% scan is a Boolean predicate

◆  scan([], State) :- final_states(F),
 member(State, F).

◆  scan([Symbol | Seq], State) :-
next_state(State, Symbol, Next), scan(Seq,
Next).

40 EECS 3401 F 2018

result propagation
◆  scan uses pumping/result propagation
◆  carries around current state and remainder of

input sequence
◆  if FSA is deterministic, when end of input is

reached, can make an accept/reject decision
immediately; tail recursion optimization can be
applied

◆  if FSA is nondeterministic, may have to
backtrack; must keep track of remaining
alternatives on execution stack

41 EECS 3401 F 2018

non-determinism

◆  a non-deterministic fsa accepts an input
sequence if there exists at least one sequence
which leaves the automaton in one of its final
states

◆  ?- fsa(Input).
◆  scan searches through all possible choices for

Symbol at each state;
◆  fails only if no sequence leads to a final state

42 EECS 3401 F 2018

representing tables

◆  can use binary connector, e. g., A-B-C
instead of next_state(A,B,C)
-  reduces typing;
-  can make it easier to check for errors

◆  ee-x-oe. ee-y-eo.
◆  oe-x-ee. oe-y-oo.
◆  etc.

43 EECS 3401 F 2018

revised version

 scan([], State) :- final_states(F),
 member(State, F).
 scan([Symbol | Seq], State) :-
 State-Symbol-Next,

 scan(Seq, Next).

