



- •Interesting, proof procedures work by simply manipulating formulas. They do not know or care anything about interpretations.
- •Nevertheless they respect the semantics of interpretations!
- •We will develop a proof procedure for firstorder logic called resolution.
  - Resolution is the mechanism used by PROLOG

EECS3401 F 2018 Fahiem Bacchus & Yves Less

3

# **Properties of Proof Procedures**

•Before presenting the details of resolution, we want to look at properties we would like to have in a (any) proof procedure.

•We write  $KB \vdash f$  to indicate that f can be proved from KB (the proof procedure used is implicit).



# Resolution

### •Clausal form.

- Resolution works with formulas expressed in clausal form.
- A literal is an atomic formula or the negation of an atomic formula. dog(fido), ¬cat(fido)
- A clause is a disjunction of literals:
- ¬owns(fido,fred) ∨ ¬dog(fido) ∨ person(fred)
- We write (¬owns(fido,fred), ¬dog(fido), person(fred))

EECS3401 F 2018 Fahiem Bacchus & Yves Lespera

A clausal theory is a conjunction of clauses.



### 2

6























# C-T-C-F: Skolemization continue

Now consider  $\forall X\exists Y$ . loves(X,Y).

- This formula claims that for every X there is some Y that X loves (perhaps a different Y for each X).
- Replacing the existential by a new constant won't work
   VX.loves(X.a).

Because this asserts that there is a **particular** individual "a" loved by every X.

• To properly convert existential quantifiers scoped by universal quantifiers we must use **functions** not just constants.

EECS3401 F 2018 Fahiem Bacchus & Yves Lesperar

23

## C-T-C-F: Skolemization continue

•We must use a function that mentions every universally quantified variable <u>that scopes the existential</u>.

• In this case X scopes Y so we must replace the existential Y by a function of X

#### $\forall X. loves(X,g(X)).$

where g is a **new** function symbol.

• This formula asserts that for every X there is some individual (given by g(X)) that X loves. g(X) can be different for each different binding of X.





C-T-C-F: Conjunctions over disjunctions  $\begin{array}{l} \forall X \forall Y. \neg p(X) \\ & (\neg p(Y) \lor p(f(X,Y)) \\ & \Lambda q(X, g(X)) \lor \neg p(g(X)) \end{array} \end{array}$ 6. Conjunctions over disjunctions  $A \lor (B \land C) \twoheadrightarrow (A \lor B) \land (A \lor C)$   $\begin{array}{l} \forall XY. \neg p(X) \lor \neg p(Y) \lor p(f(X,Y)) \\ & \Lambda \neg p(X) \lor q(X, g(X)) \lor \neg p(g(X)) \end{array}$ 











**Substitutions.** • We can compose two substitutions.  $\theta$  and  $\sigma$  to obtain a new substition  $\theta\sigma$ . Let  $\theta = \{X_1 = s_1, X_2 = s_2, ..., X_m = s_m\}$   $\sigma = \{Y_1 = t_1, Y_2 = t_2, ..., Y_k = s_k\}$ To compute  $\theta\sigma$ 1.  $S = \{X_1 = s_1\sigma, X_2 = s_2\sigma, ..., X_m = s_m\sigma, Y_1 = t_1, Y_2 = t_2, ..., Y_k = s_k\}$ we apply  $\sigma$  to each RHS of  $\theta$  and then add all of the equations of  $\sigma$ .

## Substitutions.

1. 
$$S = \{X_1 = s_1\sigma, X_2 = s_2\sigma, ..., X_m = s_m\sigma, Y_1 = t_1, Y_2 = t_2, ..., Y_k = s_k\}$$

- 2. Delete any identities, i.e., equations of the form V=V.
- Delete any equation Y<sub>i</sub>=s<sub>i</sub> where Y<sub>i</sub> is equal to one of the X<sub>i</sub> in θ.

EECS3401 F 2018 Fahiem Bacchus & Yves Le

The final set S is the composition  $\theta\sigma$ .









# MGU.

- The MGU is the "least specialized" way of making clauses with universal variables match.
- We can compute MGUs.
- Intuitively we line up the two formulas and find the first sub-expression where they disagree. The pair of subexpressions where they first disagree is called the disagreement set.
- The algorithm works by successively fixing disagreement sets until the two formulas become syntactically identical.

43

# MGU.

To find the MGU of two formulas f and g.

1. 
$$k = 0; \sigma_0 = \{\}; S_0 = \{f,g\}$$

- 2. If  $S_k$  contains an identical pair of formulas stop, and return  $\sigma_k$  as the MGU of f and g.
- **3**. Else find the disagreement set  $D_k = \{e_1, e_2\}$  of  $S_k$
- 4. If e<sub>1</sub> = V a variable, and e<sub>2</sub> = t a term not containing V (or vice-versa) then let σ<sub>k+1</sub> = σ<sub>k</sub> {V=t} (Compose the additional substitution) S<sub>k+1</sub> = S<sub>k</sub>{V=t} (Apply the additional substitution) k = k+1 GOTO 2
  5. Else stop, f and g cannot be unified.

EECS3401 F 2018 Fahiem Bacchus & Yves Les















EECS3401 F 2018 Fahiem Bacchus & Yves Lesp

F2.

3. Therefore no doctor is a quack. Query.

50

| Resolution Proof Example                            | <b>Resolution Proof Example</b>                     |
|-----------------------------------------------------|-----------------------------------------------------|
| Resolution Proof Step 3.                            | Resolution Proof Step 4.                            |
| Convert to Clausal form.                            | Resolution Proof from the Clauses.                  |
|                                                     | 1. p(a)                                             |
| F1.                                                 | 2. $(\neg d(Y), I(a,Y))$                            |
|                                                     | 3. $(\neg p(Z), \neg q(R), \neg I(Z,R))$            |
| F2.                                                 | 4. d(b)                                             |
|                                                     | 5. q(b)                                             |
| Negation of Query.                                  |                                                     |
|                                                     |                                                     |
|                                                     |                                                     |
| EECS3401 F 2018 Fahiem Bacchus & Yves Lesperance 53 | EECS3401 F 2018 Fahiem Bacchus & Yves Lesperance 54 |





















