
1 EECS 3401 F 2018 

Prolog Core Concepts and 
Notation 

Yves Lespérance 
Adapted from Peter Roosen-Runge 
Readings: C & M Ch 1, 2, 3.1-3.3, 8 

2 EECS 3401 F 2018 

declarative/logic 
programming 

◆  idea: write a program that is a logical 
theory about some domain and then 
query it 

◆  most well known instance is Prolog 
◆  core constructs, terms and statements, 

are inherited from first order logic 

3 EECS 3401 F 2018 

terms 

◆  Prolog statements express relationships 
among terms 

◆  terms are (a generalization) of the same 
notion in first order logic, i.e. a constant, a 
variable, or a function applied to some 
argument terms 

◆  E.g. john, john_smith, X, Node, _person, 
fatherOf(paul), date(25,10,2005) 

◆  fatherOf and date are functors; date has arity 
3; it takes 3 arguments 

4 EECS 3401 F 2018 

terms 

◆  variables begin with upper-case letter or _ 
◆  constants and functors (symbols) begin with 

lower-case 
◆  terms denote objects 
◆  compound terms are called structures 
◆  E.g. course(complexity,time(Monday,

9,11),lecturer(patrick,dymond),location(LAS,
3033)) 

◆  used to represent complex data 
◆  terms (usually) have a tree structure 



5 EECS 3401 F 2018 

facts 

◆  facts are like atomic formulas in first order 
logic. 

◆  syntax is same as terms, but ending with a 
period. 

◆  e.g. fatherOf(paul,henry). 
 mortal(ulyssus). 
 likes(X,iceCream). 
 likes(mary,brotherOf(helen)). 

◆  variables are implicitly universally quantified. 

6 EECS 3401 F 2018 

rules 

◆  rules are conditional statements. 
◆  e.g. mortal(X) :- human(X). 
 i.e. ∀x Human(x) → Mortal(x), 
 all humans are mortal. 

◆  daughter(X,Y) :- father(Y,X), female(X). 
◆  , represents conjunction. 
◆  likes(mary,X) :- isSweet(X). 
 

7 EECS 3401 F 2018 

rules 

◆  ancestor(X,Y) :-  
       father(X,Z), ancestor(Z,Y). 
◆  variables are universally quantified from 

outside; can think of variables that 
appear only in rule body as existentially 
quantified. 

8 EECS 3401 F 2018 

queries 

◆  A query asks whether a given 
statement is true, i.e. whether it follows 
from the program. 

◆  e.g. ?- mortal(ulyssus). given 
 mortal(X) :- human(X). 
 human(ulyssus).  human(penelope). 
 god(zeus). 
 Prolog answers Yes 



9 EECS 3401 F 2018 

queries 

◆  ?- mortal(X).  
 X = ulyssus ; 
 X = penelope 
 Yes 

◆  variables in queries are existentially 
quantified; can be used to retrieve 
information. 

◆  can have conjunctive queries, e.g. 
 ?- mortal(X), mortal(Y), not(X = Y). 

10 EECS 3401 F 2018 

lists 

◆  lists are a special kind of term that allows 
arbitrary number of components 

◆  [] is the empty list 
◆  .(a,b) is a dotted pair 
◆  [a, b, c] = .(a,.(b,.(c,[]))) is a list of 3 

components. 
◆  the functor . builds binary trees 
◆  can use display(X) to print internal 

representation of X 

11 EECS 3401 F 2018 

lists 

◆  can refer to the first and rest of a list using the 
notation: [First | Rest] 

◆  e.g. ?- X = [a,b,c], X = [F|R]. 
 X = [a,b,c] 
 F = a 
 R = [b,c] 

◆  E.g. X = [b], Y = a, Z = [Y|X]. 
 X = [b] 
 Y = a 
 Z = [a,b] 

12 EECS 3401 F 2018 

unification 

◆  this was an instance of the kind of 
pattern matching called unification that 
Prolog performs 

◆  Prolog tries to find a way to instantiate 
the variables (substitute terms for 
them) that satisfies the query 

◆  more on this later 



13 EECS 3401 F 2018 

terms can represent graphs 

◆  ?- X = [a|X]. 
 X = [a, a, a, a, a, a, a, a, a|…] 
 Yes 

◆  here X denotes an infinite or circular list  
◆  this is not allowed in first-order logic; a 

variable cannot denote a term and one 
of its subterms; but Prolog omits the 
“occurs check” 

14 EECS 3401 F 2018 

building a knowledge base 

◆  to be used in a computation, facts and 
rules must be stored in the (dynamic) 
database 

◆  facts and rules get into the database 
through assertion and consultation 

◆  consultation loads facts and rules from 
a file 

15 EECS 3401 F 2018 

assertion 

◆  ?- assert(human(ulyssus)). 
◆  ?- human(X). 
 X = ulyssus 
 Yes 

◆  assertion can be done dynamically 
◆  also retract to remove facts and rules 

from the DB 
◆  like assignment, change state; avoid 

when possible 

16 EECS 3401 F 2018 

consultation 

◆  ?- consult(’family.pl’). 
 loads facts and rules from file family.pl 

◆  ?- [family]. 
 does the same thing 

◆  ?- [user]. 
 lets you enter facts and rules from the 
keyboard 



17 EECS 3401 F 2018 

denotation/meaning of 
Prolog programs 

◆  a Prolog program defines a set of 
relations, i.e. specifies which tuples of 
objects/terms belong to a particular 
relation 

◆  in logic, this is called a model 
◆  declarative programming is very 

different from usual procedural 
programming where programs perform 
many state changing operations 

18 EECS 3401 F 2018 

denotation of Prolog 
program e.g. 

◆  fatherOf(john,paul). 
 fatherOf(mary,paul). 
 motherOf(john,lisa). 
 parentOf(X,Y) :- fatherOf(X,Y). 
 parentOf(X,Y) :- motherOf(X,Y). 

◆  fatherOf is the relation {<john,paul>, 
<mary,paul>} 

◆  what is the relation associated with 
motherOf and parentOf? 

19 EECS 3401 F 2018 

rules as procedures 

◆  rule has form goal :- body 
◆  goal or head is like name of procedure 
◆  terms on the RHS are like the body of 

the procedure, the sub-goals that have 
to be achieved to show that the goal 
holds 

◆  the sub-goals will be attempted left-to-
right 

◆  rule succeeds if all sub-goals succeed 

20 EECS 3401 F 2018 

passing values 

◆  calling/querying a goal can instantiate 
its variables 

◆  a sub-goal’s success can bind a variable 
within it, also binding the same variable 
in the goal 

◆  binding or instantiating a variable is 
giving it a value 

◆  compare to passing values into or out of 
a procedure 



21 EECS 3401 F 2018 

passing values e.g. 

◆  Assume program: 
 motherOf(john,lisa). 
 parentOf(X,Y) :- motherOf(X,Y). 

◆  Queries: 
 ?- parentOf(john,X). 
 X = lisa  Yes 
 ?- parentOf(X,lisa). 
 X = john Yes 
 ?- parentOf(X,Y). 
 X = john, Y = lisa Yes 

◆  No fixed input and output parameters 

22 EECS 3401 F 2018 

relational thinking 

◆  in Prolog, formulate statements about 
function values as relational facts, e.g. 
 factorial(0,1). 
 factorial(N,M):- K is N -1, factorial(K,L), 

       M is N * L. 
◆  to compose functions, e.g. Y = f(g(X)), 

you must name intermediate results 
 fg(X,Y):- g(X,Z), f(Z,Y). 

23 EECS 3401 F 2018 

almost everything is 
syntactically a term 

◆  lists are terms; what is the functor? 
◆  rules are terms: 
 grandfather(X,Y):- father(X,Z), 
father(Z,Y). 
 What are the functors? 

◆  queries are terms 

24 EECS 3401 F 2018 

arithmetic functions 

◆  Prolog retains arithmetic functions as functions 
(more intuitive): 
 ?- X is exp(1). % exp(1) = e1 

 X = 2.71828 
 Yes 
 ?- X is (4 + 2) * 5. 
 X = 30 
 Yes 

◆  How does is compare with =, assignment? 



25 EECS 3401 F 2018 

operators 

◆  some functors are represented by infix 
or prefix or postfix operators 

◆  Some infix operators: is, =, +, *, /, 
mod, >, >=, “:-”, “,”, etc. 

◆  + and - are both prefix and infix 
◆  :- as prefix is a command, used for 

declarations 
◆  operators have precedence 
◆  can define our own operators 

26 EECS 3401 F 2018 

help is sometimes helpful 

?- help(reverse). 
reverse(+List1, -List2) 
    Reverse  the order  of the elements  in List1  and unify the  

result with the elements of List2. 
 
+arg: arg is input and should be instantiated. 
-arg: arg is output and can be initially uninstantiated; if the 

query succeeds, the arg is instantiated with the "output" of 
the query. 

?arg: arg can be either input or output 

27 EECS 3401 F 2018 

online help 

?- help(lists). 
No help available for lists 
Yes 
?- apropos(lists). 
merge/3                       Merge two sorted lists 
append/3                      Concatenate lists 
Section 11-1                  "lists:  List Manipulation" 
Section 15-2-1               "lists” 
Yes 
?- help(append/3). 
append(?List1, ?List2, ?List3) 

 Succeeds  when List3  unifies with  the concatenation  of List1  and 
 List2.   The  predicate can be  used with any instantiation  pattern 
 (even three variables). 

 

28 EECS 3401 F 2018 

examples 

?- append([a,b],[c],X). 
X = [a, b, c]  

Yes 
?- append(X,[c],[a,b,c]). 
X = [a, b]  

Yes 
?- append([a,b],[c],[a,b,d]). 

No 



29 EECS 3401 F 2018 

more examples 

?- append([a,b],X,Y). 
X = _G187 
Y = [a, b|_G187]  
Yes 
?- append(X,Y,Z). 
X = [] 
Y = _G181 
Z = _G181 ; 

X = [_G262] 
Y = _G181 
Z = [_G262|_G181] ; 

X = [_G262, _G268] 
Y = _G181 
Z = [_G262, _G268|_G181]  
 
append is an example of a reversible or steadfast predicate (Richard O’Keefe) 

 
 

30 EECS 3401 F 2018 

reversible programming 

◆  good predicates are steadfast 
◆  they gives correct answers even if 

unusual values are supplied 
e. g. variables for inputs, constants for 

outputs 
◆  non-steadfast predicates require 

specific arguments to be instantiated 
(input) or variables (output) 

31 EECS 3401 F 2018 

unification 

◆  Prolog matches terms by unifying them, i.e. 
applying a most general unifier to them 

◆  it instantiates variables as little as possible to 
make them match, e.g. 
 ?- X = f(Y,b,Z), X = f(a,V,W). 
 X = f(a, b, _G182) 
 Y = a 
 Z = _G182 
 V = b 

 W = _G182  

32 EECS 3401 F 2018 

family relations example 



33 EECS 3401 F 2018 

family relations 

◆  the database: 
rules 
parent(Parent, Child) :- mother(Parent, Child). 
parent(Parent, Child) :- father(Parent, Child). 

 
facts 
father('George', 'Elizabeth'). father('George', 'Margaret'). 
mother('Mary', 'Elizabeth').  mother('Mary', 'Margaret').  
 

◆  Note encoding of disjunction 

34 EECS 3401 F 2018 

finding all solutions 
| ?- parent(Parent, Child). 
Parent = 'Mary', 
Child = 'Elizabeth' ; 
 
Parent = 'Mary', 
Child = 'Margaret' ; 
 
Parent = 'George', 
Child = 'Elizabeth' ; 
 
Parent = 'George', 
Child = 'Margaret' ; 
 
no  

35 EECS 3401 F 2018 

how prolog finds solutions 

trace]  ?-  
 parent(Parent, Child1), 
parent(Parent, Child2), 
not(Child1 = Child2). 

   Call: (8) parent(_G313, 
_G314) ? creep 

Call: (9) mother(_G313, 
_G314) ? creep 

Exit: (9) mother('Mary', 
'Elizabeth') ? creep 

Exit: (8) parent('Mary', 
'Elizabeth') ? creep 

Call: (8) parent('Mary', 
_G317) ? creep 

Call: (9) mother('Mary', 
_G317) ? creep 

 

Exit: (9) mother('Mary', 
'Elizabeth') ? creep 

Exit: (8) parent('Mary', 
'Elizabeth') ? creep 

Redo: (9) mother('Mary', 
_G317) ? creep 

Exit: (9) mother('Mary', 
'Margaret') ? creep 

Exit: (8) parent('Mary', 
'Margaret') ? creep 

Parent = 'Mary' 
Child1 = 'Elizabeth' 
Child2 = 'Margaret'  
 

36 EECS 3401 F 2018 

Prolog’s query answering 
process 

◆  a query is a conjunction of terms 
◆  answer to the query is yes if all terms succeed 
◆  A term in a query succeeds if 

❖  it matches a fact in the database or 
❖  it matches the head of a rule whose body succeeds 

◆  the substitution used to unify the term and the 
fact/head is applied to the rest of the query 

◆  works on query terms in left to right order; 
databases facts/rules that match are tried in 
top to bottom order 



37 EECS 3401 F 2018 

recursion examples 

38 EECS 3401 F 2018 

generating permutations 

◆  A permutation P of a list L is a list 
whose first is some element E of L and 
whose rest is a permutation of L with E 
removed. 

◆  [] is a permutation of [] 
◆  In Prolog: 
 permutation([],[]). 
 permutation(L,[E|PR]) :- select(E,L,R), 

  permutation(R,PR). 

39 EECS 3401 F 2018 

selecting an element from a 
list 

◆  To select an element from a list, can 
either select the first leaving the rest, 
or select some element from the rest 
and leaving the first plus the unselected 
elements from the rest. 

◆  In Prolog: 
 select(X,[X|R],R). 
 select(X,[Y|R],[Y|RS]):- select(X,R,RS). 

40 EECS 3401 F 2018 

sorting by the definition 

◆  Find a permutation that is ordered 
 sort(L,P):- permutation(L,P), 
   ordered(P). 
 ordered([]). 
 ordered([E]). 
 ordered([E1,E2|R]) :- E1 <= E2, 
   ordered([E2|R]). 

◆  an example of “generate and test” 



41 EECS 3401 F 2018 

reverse 

◆  reverse(L,RL) holds if RL is a list with the 
components of L reversed 

◆  ordinary recursive definition 
 reverse([],[]). 
 reverse([F|R],RL):- reverse(R,RR), 
  append(RR, [F], RL). 
 append([],L,L). 
 append([F|R],L,[F|RL]):- 
  append(R,L,RL). 

42 EECS 3401 F 2018 

reverse 

◆  Tail recursive definition: 
 reverse(L,RL):- reverse(L,[],RL). 
 reverse([],Acc,Acc). 
 reverse([F|R],Acc,RL):- 
   reverse(R,[F|Acc],RL). 

◆  recursive call is last thing done 
◆  can avoid saving calls on stack 

43 EECS 3401 F 2018 

solving a logic puzzle with Prolog 

44 EECS 3401 F 2018 

the zebra puzzle 

1.  There are 5 houses, occupied by politically-incorrect 
gentlemen of 5 different nationalities, who all have different 
coloured houses, keep different pets, drink different drinks, 
and smoke different  (now-extinct) brands of cigarettes. 

2.  The Englishman lives in a red house. 
3.  The Spaniard keeps a dog. 
4.  The owner of the green house drinks coffee. 
… 
6.  The ivory house is just to the left of the green house. 
… 
11.  The Chesterfields smoker lives next to a house with a fox. 
 
Who owns the zebra and who drinks water? 



45 EECS 3401 F 2018 

Prolog implementation 

◆  represent the 5 houses by a structure of 
5 terms 
 house(Colour, Nationality, Pet, Drink, 
Cigarettes) 

◆  create a partial structure using 
variables, to be filled by the solution 
process 

◆  specify constraints to instantiate 
variables 

46 EECS 3401 F 2018 

house building 

makehouses(0,[]). 
 
makehouses(N,[house(Col, Nat, Pet, Drk, Cig)|List]) 
                :- N>0, N1 is N - 1, makehouses(N1,List). 
 
or more cleanly with anonymous variables: 
 
makehouses(N,[house(_, _, _, _, _)|List]) 
                :- N>0, N1 is N - 1, makehouses(N1,List). 
 
Why is this equivalent? (See p. 159.) 

 

47 EECS 3401 F 2018 

the empty houses 

?- makehouses(5, List). 
 
List = [house(_G233, _G234, _G235, _G236, _G237), 

house(_G245, _G246, _G247, _G248, _G249), 
house(_G257, _G258, _G259, _G260, _G261), 
house(_G269, _G270, _G271, _G272, _G273), 
house(_G281, _G282, _G283, _G284, _G285)]  

48 EECS 3401 F 2018 

constraints 

◆  The Englishman lives in a red house. 
 house(red, englishman, _, _, _) on List, 

◆  The Spaniard keeps a dog. 
 house( _, spaniard, dog, _, _) on List, 

◆  The owner of the green house drinks coffee. 
 house(green, _, _, coffee, _) on List 

◆  The ivory house is just to the left of the green house 
sublist2( [house(ivory,           _,    _,      _,       _) 

  ,house(green,           _,    _,      _,       _)], List), 
◆  The Chesterfields smoker lives next to a house with a fox. 

  nextto(house(    _,           _,    _,      _, chesterfields), 
         house(    _,           _,  fox,      _,         _), List),  



49 EECS 3401 F 2018 

defining the on operator 

◆  on is a user-defined infix operator that 
is a version of member/2 

◆  :- op(100,zfy,on). 
 X on List :- member(X,List). 
 amounts to 
  X on [X|_]. 
  X on [_|R]:- X on R. 

50 EECS 3401 F 2018 

predicates for defining 
constraints 

◆  “just to the left of”?  “lives next to”? 
◆  define sublist2(S,L) 
 sublist2([S1, S2], [S1, S2 | _]) . 
 sublist2(S, [_ | T]) :- sublist2(S, T). 

◆  define nextto predicate 
 nextto(H1, H2, L) :- sublist2([H1, H2], L). 
 nextto(H1, H2 ,L) :- sublist2([H2, H1], L). 

51 EECS 3401 F 2018 

translating the constraints 

◆  The ivory house is just to the left of the green house 
sublist2( [house(ivory,  _,  _,  _, _),    

         house(green,  _,  _,  _,  _)], List), 
◆  The Chesterfields smoker lives next to a house with a 

fox. 
  nextto(house( _, _, _, _, chesterfields), 
            house( _, _,  fox,  _, _), List),  

52 EECS 3401 F 2018 

looking for the zebra 

◆  Who owns the zebra and who drinks water? 
 find(ZebraOwner, WaterDrinker) :- 
  makehouses(5, List), 
  house(red, englishman, _, _, _)   on List, 
  … % all other constraints 
  house( _, WaterDrinker, _, water, _)  on List, 

         house( _, ZebraOwner, zebra, _, _)  on List. 
◆  solution is generated and queried in the same 

clause 
◆  neither water or zebra are mentioned in the 

constraints  



53 EECS 3401 F 2018 

solving the puzzle 

?- [zebra]. 
% zebra compiled 0.00 sec, 5,360 bytes 
 
Yes 
?- find(ZebraOwner, WaterDrinker). 

ZebraOwner = japanese 
WaterDrinker = norwegian ; 

No 
 

54 EECS 3401 F 2018 

how Prolog finds solution 

After first 8 constraints: 
List = [ 
house(red, englishman, snail, _G251, old_gold), 
house(green, spaniard, dog, coffee, _G264), 
house(ivory, ukrainian, _G274, tea, _G276), 
house(green, _G285, _G286, _G287, _G288), 
house(yellow, _G297, _G298, _G299, kools)] 

55 EECS 3401 F 2018 

how Prolog solves the puzzle 

Then need to satisfy “the owner of the 
third house drinks milk”, i.e. 

List = [_, _, house( _, _, _, milk, _),_, _], 
Can’t be done with current instantiation 

of List.  So Prolog will backtrack and 
find another. 

56 EECS 3401 F 2018 

how Prolog solves the puzzle 

The unique complete solution is 
L = [ 
house(yellow, norwegian, fox, water, kools), 
house(blue, ukrainian, horse, tea, chesterfields), 
house(red, englishman, snail, milk, old_gold), 
house(ivory, spaniard, dog, orange, 

lucky_strike), 
house(green, japanese, zebra, coffee, 

parliaments)] 
See course web page for code of the example. 
 


