
1

1 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

CSE 3401: Intro to AI & Logic Prog 
Planning as Heuristic Search

●  Readings: Russell & Norvig 3rd edition
Chapter 10 (in 2nd edition, Sections 11.1,
11.2, and 11.4)

2 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Planning as a Search Problem

● Given a CW-KB representing the initial state, a
set of STRIPS or ADL (Action Description
Language) operators, and a goal condition we
want to achieve (specified either as a
conjunction of facts, or as a formula)
■ The planning problem is determine a sequence of

actions that when applied to the initial CW-KB yield
an updated CW-KB which satisfies the goal.

3 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Planning As Search

● This can be treated as a search problem.
■ The initial CW-KB is the initial state.
■ The actions are operators mapping a state (a CW-

KB) to a new state (an updated CW-KB).
■ The goal is satisfied by any state (CW-KB) that

satisfies the goal.

4 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Example.

C
A B

move(b,c)
C
A

B

move(c,b)
C

A B

move(c,table)
C A B

move(a,b)
B
A C

2

5 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Problems

● Search tree is generally quite large
■ randomly reconfiguring 9 blocks takes thousands of

CPU seconds.
● The representation suggests some structure.

Each action only affects a small set of facts,
actions depend on each other via their
preconditions.

● Planning algorithms are designed to take
advantage of the special nature of the
representation.

6 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Planning

● We will look at 1 technique
● Relaxed Plan heuristics used with heuristic

search.

7 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Reachability Analysis.

● The idea is to consider what happens if we
ignore the delete lists of actions.

● This is yields a “relaxed problem” that can
produce a useful heuristic estimate.

8 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Reachability Analysis

● In the relaxed problem actions add new facts,
but never delete facts.

● Then we can do reachability analysis, which is
much simpler than searching for a solution.

3

9 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Reachability

● We start with the initial state S0.
● We alternate between state and action layers.
● We find all actions whose preconditions are contained

in S0. These actions comprise the first action layer A0.
● The next state layer consists of all of S0 as well as the

adds of all of the actions in A0.
● In general

■ Ai is the set of actions whose preconditions are contained in Si.
■ Si+1 is Si union the add lists of all of the actions in Ai.

10 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

STRIPS Blocks World Operators.

● pickup(X)  
Pre: {clear(X), ontable(X), handempty}  
Add: {holding(X)}  
Del: {clear(X), ontable(X), handempty}

● putdown(X)  
Pre: {holding(X)}  
Add: {clear(X), ontable(X), handempty}  
Del: {holding(X)}

11 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

STRIPS Blocks World Operators.

● unstack(X,Y)  
Pre: {clear(X), on(X,Y), handempty}  
Add: {holding(X), clear(Y)}  
Del: {clear(X), on(X,Y), handempty}

● stack(X,Y)  
Pre: {holding(X),clear(Y)}  
Add: {on(X,Y), handempty, clear(X)}  
Del: {holding(X),clear(Y)}

12 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Example

a
b
c d

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty

unstack(a,b)
pickup(d)

a
b
c d

S0 A0

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
handempty,
clear(d),
holding(a),
clear(b),
holding(d)

a
d

this is not
a state!

S1

4

13 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty,
holding(a),
clear(b),
holding(d)

S1

putdown(a),
putdown(d),
stack(a,b),
stack(a,a),
stack(d,b),
stack(d,a),
pickup(d),
…
unstack(b,c)
…

A1

14 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Reachabilty

● We continue until the goal G is contained in the
state layer, or until the state layer no longer
changes.

● Intuitively, the actions at level Ai are the actions
that could be executed at the i-th step of some
plan, and the facts in level Si are the facts that
could be made true after some i-1 step plan.

● Some of the actions/facts have this property.
But not all!

15 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Reachability

a
b c

on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b)
pickup(c)

S0 A0

on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

S1

stack(c,b)
…

A1

…
on(c,b),
…

but
stack(c,b)
cannot be
executed
after one

step

and on(c,b)
needs 4
actions

16 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Heuristics from Reachability Analysis

Grow the levels until the goal is contained in the
final state level S[K].
§  If the state level stops changing and the goal is not

present. The goal is unachievable. (The goal is a
set of positive facts, and in STRIPS all
preconditions are positive facts).

●  Now do the following

5

17 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Heuristics from Reachability Analysis
CountActions(G,SK):
/* Compute the number of actions contained in a

relaxed plan achieving the goal. */
●  Split G into facts in SK-1 and elements in SK only.

These sets are the previously achieved and just
achieved parts of G.

●  Find a minimal set of actions A whose add-effects
cover the just achieved part of G. (The set contains
no redundant actions, but it might not be the
minimum sized set.)

●  Replace the just achieved part of G with the
preconditions of A, call this updated G, NewG.

●  Now return CountAction(NewG,SK-1) + number of
actions needed to cover the just achieved part of G.

18 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Example
CountActs(G,S2)
GP ={f5, f1

} //already in S1

GN = {f6} //New in S2

A = {a3} //adds all in GN

//the new goal: GP ∪ Pre(A)

G1 = {f5,f1,f2,f4}
Return
 1 + CountActs(G1,S1)

 legend: [pre]act[add]
S0 = {f1, f2, f3}
A0 = {[f1]a1[f4], [f2]a2[f5]}
S1 = {f1,f2,f3,f4,f5}
A1 = {[f2,f4,f5]a3[f6]}
S2 ={f1,f2,f3,f4,f5,f6}

G = {f6,f5, f1}

We split G into GP and GN:

19 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Example
Now, we are at level S1
S0 = {f1, f2, f3}
A0 = {[f1]a1[f4], [f2]a2[f5]}
S1 = {f1,f2,f3,f4,f5}
A1 = {[f2,f4,f5]a3[f6]}
S2 ={f1,f2,f3,f4,f5,f6}

G1 = {f5,f1,f2

,f4}

We split G1 into GP and GN:

CountActs(G1,S1)
GP ={f1,f2} //already in S0
GN = {f4,f5} //New in S1
A = {a1,a2} //adds all in GN

//the new goal: GP ∪ Pre(A)
G2 = {f1,f2

}
Return
 2 + CountActs(G2,S0)
 = 2 + 0
 So, in total CountActs(G,S2)=1+2=3

20 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Using the Heuristic

1.  To use CountActions as a heuristic, we build
a layered structure from a state S that reaches
the goal.

2.  Then we CountActions to see how many
actions are required in a relaxed plan.

3.  We use this count as our heuristic estimate of
the distance of S to the goal.

4.  This heuristic tends to work better as a best-
first search, i.e., when the cost of getting to
the current state is ignored.

6

21 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Admissibility

● An optimal length plan in the relaxed problem (actions
have no deletes) will be a lower bound on the optimal
length of a plan in the real problem.

● However, CountActions does NOT compute the length
of the optimal relaxed plan.

● The choice of which action set to use to achieve GP
(“just achieved part of G”) is not necessarily optimal.

● In fact it is NP-Hard to compute the optimal length
plan even in the relaxed plan space.

● So CountActions will not be admissible.

22 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Empirically

● However, empirically refinements of
CountActions performs very well on a number
of sample planning domains.

23 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

CWA

●  “Classical Planning”. No incomplete or
uncertain knowledge.

●  Use the “Closed World Assumption” in our
knowledge representation and reasoning.
■  The Knowledge base used to represent a state of

the world is a list of positive ground atomic facts.
■  CWA is the assumption that

a)  if a ground atomic fact is not in our list of
“known” facts, its negation must be true.

b)  the constants mentioned in KB are all the
domain objects.

24 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

State of the Art in Planning

● There are annual AI planning systems competitions
(e.g. IPC)

● The Planning Domain Definition Language (PDDL) is a
standard in the area; has sublanguages with varying
expressiveness

● Several state of the art (classical) planning systems
perform well on large real world problems

7

25 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance

Current Research in Planning

● STRIPS/classical planning makes very strong
assumptions: complete information, deterministic
actions, static single-agent world

● Much recent work in planning addresses more general
forms of planning that avoid such assumptions

● In such cases, a solution may be a branching plan
(branching on observations/action outcomes), finite
state automaton, or a policy

● Hierarchical planning/abstraction is useful to address
large real world problems

