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CSE 3401: Intro to AI & Logic Prog 
Planning as Heuristic Search 

 
 

●  Readings: Russell & Norvig 3rd edition 
Chapter 10 (in 2nd edition, Sections 11.1, 
11.2, and 11.4) 
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Planning as a Search Problem 

● Given a CW-KB representing the initial state, a 
set of STRIPS or ADL (Action Description 
Language) operators, and a goal condition we 
want to achieve (specified either as a 
conjunction of facts, or as a formula) 
■ The planning problem is determine a sequence of 

actions that when applied to the initial CW-KB yield 
an updated CW-KB which satisfies the goal. 
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Planning As Search 

● This can be treated as a search problem. 
■ The initial CW-KB is the initial state. 
■ The actions are operators mapping a state (a CW-

KB) to a new state (an updated CW-KB). 
■ The goal is satisfied by any state (CW-KB) that 

satisfies the goal. 
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Example. 
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Problems 

● Search tree is generally quite large 
■ randomly reconfiguring 9 blocks takes thousands of 

CPU seconds. 
● The representation suggests some structure. 

Each action only affects a small set of facts, 
actions depend on each other via their 
preconditions. 

● Planning algorithms are designed to take 
advantage of the special nature of the 
representation. 
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Planning 

● We will look at 1 technique 
● Relaxed Plan heuristics used with heuristic 

search. 
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Reachability Analysis. 

● The idea is to consider what happens if we 
ignore the delete lists of actions. 

● This is yields a “relaxed problem” that can 
produce a useful heuristic estimate. 
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Reachability Analysis 

● In the relaxed problem actions add new facts, 
but never delete facts. 

● Then we can do reachability analysis, which is 
much simpler than searching for a solution. 

  



3 

9 EECS 3401 F18 Fahiem Bacchus & Yves Lesperance 

Reachability 

● We start with the initial state S0.  
● We alternate between state and action layers. 
● We find all actions whose preconditions are contained 

in S0. These actions comprise the first action layer A0. 
● The next state layer consists of all of S0 as well as the 

adds of all of the actions in A0. 
● In general 

■ Ai is the set of actions whose preconditions are contained in Si. 
■ Si+1 is Si union the add lists of all of the actions in Ai. 
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STRIPS Blocks World Operators. 

● pickup(X)  
Pre:  {clear(X), ontable(X), handempty}  
Add: {holding(X)}  
Del:  {clear(X), ontable(X), handempty} 

● putdown(X)  
Pre:  {holding(X)}  
Add: {clear(X), ontable(X), handempty}  
Del:  {holding(X)} 
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STRIPS Blocks World Operators. 

● unstack(X,Y)  
Pre:  {clear(X), on(X,Y), handempty}  
Add: {holding(X), clear(Y)}  
Del:  {clear(X), on(X,Y), handempty} 

● stack(X,Y)  
Pre:  {holding(X),clear(Y)}  
Add: {on(X,Y), handempty, clear(X)}  
Del:  {holding(X),clear(Y)} 
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Example 

a 
b 
c d 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
clear(d), 
handempty 

unstack(a,b) 
pickup(d) 

a 
b 
c d 

S0 A0 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
handempty, 
clear(d), 
holding(a), 
clear(b), 
holding(d) 

a 
d 

this is not 
a state! 

S1 
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Example 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
clear(d), 
handempty, 
holding(a), 
clear(b), 
holding(d) 

S1 

putdown(a), 
putdown(d), 
stack(a,b), 
stack(a,a), 
stack(d,b), 
stack(d,a), 
pickup(d), 
… 
unstack(b,c) 
…  

A1 
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Reachabilty 

● We continue until the goal G is contained in the 
state layer, or until the state layer no longer 
changes.  

● Intuitively, the actions at level Ai are the actions 
that could be executed at the i-th step of some 
plan, and the facts in level Si are the facts that 
could be made true after some i-1 step plan. 

● Some of the actions/facts have this property. 
But not all! 
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Reachability 

a 
b c 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(b), 
clear(a), 
clear(c), 
handempty 

unstack(a,b) 
pickup(c) 

S0 A0 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(b), 
clear(a), 
clear(c), 
handempty, 
holding(a), 
clear(b), 
holding(c) 

S1 

stack(c,b) 
… 

A1 

… 
on(c,b), 
… 

but 
stack(c,b) 
cannot be 
executed 
after one 

step 

and on(c,b) 
needs 4 
actions 
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Heuristics from Reachability Analysis 

Grow the levels until the goal is contained in the 
final state level S[K].  
§  If the state level stops changing and the goal is not 

present. The goal is unachievable. (The goal is a 
set of positive facts, and in STRIPS all 
preconditions are positive facts). 

●  Now do the following 
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Heuristics from Reachability Analysis 
CountActions(G,SK): 
/* Compute the number of actions contained in a 

relaxed plan achieving the goal. */  
●  Split G into facts in SK-1 and elements in SK only. 

These sets are the previously achieved and just 
achieved parts of G. 

●  Find a minimal set of actions A whose add-effects 
cover the just achieved part of G. (The set contains 
no redundant actions, but it might not be the 
minimum sized set.) 

●  Replace the just achieved part of G with the 
preconditions of A, call this updated G, NewG. 

●  Now return CountAction(NewG,SK-1) + number of 
actions needed to cover the just achieved part of G. 
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Example 
CountActs(G,S2) 
GP ={f5, f1

} //already in S1 

GN = {f6}    //New in S2 

A = {a3}    //adds all in GN 

 
//the new goal: GP  ∪ Pre(A) 

G1 = {f5,f1,f2,f4} 
Return 
  1 + CountActs(G1,S1) 

      legend:  [pre]act[add] 
S0 = {f1, f2, f3} 
A0 = {[f1]a1[f4],  [f2]a2[f5]} 
S1 = {f1,f2,f3,f4,f5} 
A1 = {[f2,f4,f5]a3[f6]} 
S2 ={f1,f2,f3,f4,f5,f6} 

G = {f6,f5, f1} 
 
We split G into GP and GN: 
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Example 
Now, we are at level S1 
S0 = {f1, f2, f3} 
A0 = {[f1]a1[f4],  [f2]a2[f5]} 
S1 = {f1,f2,f3,f4,f5} 
A1 = {[f2,f4,f5]a3[f6]} 
S2 ={f1,f2,f3,f4,f5,f6} 
 
G1 = {f5,f1,f2

,f4} 
 
We split G1 into GP and GN: 
 
 
 
 

CountActs(G1,S1) 
GP ={f1,f2}  //already in S0 
GN = {f4,f5} //New in S1 
A = {a1,a2} //adds all in GN 
 

//the new goal: GP  ∪ Pre(A) 
G2 = {f1,f2

} 
Return 
     2 + CountActs(G2,S0) 
  = 2 + 0  
   So, in total CountActs(G,S2)=1+2=3 
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Using the Heuristic 

1.  To use CountActions as a heuristic, we build 
a layered structure from a state S that reaches 
the goal. 

2.  Then we CountActions to see how many 
actions are required in a relaxed plan. 

3.  We use this count as our heuristic estimate of 
the distance of S to the goal. 

4.  This heuristic tends to work better as a best-
first search, i.e., when the cost of getting to 
the current state is ignored. 
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Admissibility 

● An optimal length plan in the relaxed problem (actions 
have no deletes) will be a lower bound on the optimal 
length of a plan in the real problem. 

● However, CountActions does NOT compute the length 
of the optimal relaxed plan.  

● The choice of which action set  to use to achieve GP 
(“just achieved part of G”) is not necessarily optimal.  

● In fact it is NP-Hard to compute the optimal length 
plan even in the relaxed plan space. 

● So CountActions will not be admissible. 
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Empirically 

● However, empirically refinements of 
CountActions performs very well on a number 
of sample planning domains. 
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CWA  

●  “Classical Planning”. No incomplete or 
uncertain knowledge. 

●  Use the “Closed World Assumption” in our 
knowledge representation and reasoning. 
■  The Knowledge base used to represent a state  of 

the world is a list of positive ground atomic facts.  
■  CWA is the assumption that  

a)  if a ground atomic fact is not in our list of 
“known” facts, its negation must be true. 

b)  the constants mentioned in KB are all the 
domain objects. 
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State of the Art in Planning 

● There are annual AI planning systems competitions 
(e.g. IPC) 

● The Planning Domain Definition Language (PDDL) is a 
standard in the area; has sublanguages with varying 
expressiveness 

● Several state of the art (classical) planning systems 
perform well on large real world problems 
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Current Research in Planning 

● STRIPS/classical planning makes very strong 
assumptions: complete information, deterministic 
actions, static single-agent world 

● Much recent work in planning addresses more general 
forms of planning that avoid such assumptions 

● In such cases, a solution may be a branching plan 
(branching on observations/action outcomes), finite 
state automaton, or a policy 

● Hierarchical planning/abstraction is useful to address 
large real world problems 


