
Application Layer 2-1

Web caches (proxy server)

 user sets browser: Web
accesses via cache
 browser sends all HTTP

requests to cache
• object in cache: cache

returns object
• else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin
server

origin
server

Application Layer 2-2

More about Web caching

 cache acts as both
client and server
• server for original

requesting client
• client to origin server

 typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
 reduce response time

for client request
 reduce traffic on an

institution’s access link
 Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-3

Caching example:

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

problem!

Application Layer 2-4

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

Caching example: fatter access link

origin
servers

1.54 Mbps
access link

154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network 1 Gbps LAN

institutional
network 1 Gbps LAN

Application Layer 2-5

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 100%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Application Layer 2-6

Caching example: install local cache

Calculating access link
utilization, delay with cache:
 suppose cache hit rate is 0.4

• 40% requests satisfied at cache,
60% requests satisfied at origin

origin
servers

1.54 Mbps
access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
 = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs
 less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network 1 Gbps LAN

local web
cache

Application Layer 2-7

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version
• no object transmission

delay
• lower link utilization

 cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

 server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Application Layer 2-8

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-9

Electronic mail

Three major components:
 user agents
 mail servers
 simple mail transfer

protocol: SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages
 e.g., Outlook, Thunderbird,

iPhone mail client
 outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-10

Electronic mail: mail servers

mail servers:
 mailbox contains incoming

messages for user
 message queue of outgoing

(to be sent) mail messages
 SMTP protocol between

mail servers to send email
messages
• client: sending mail

server
• “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-11

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer
• handshaking (greeting)
• transfer of messages
• closure

 command/response interaction (like HTTP)
• commands: ASCII text
• response: status code and phrase

 messages must be in 7-bit ASCI

Application Layer 2-12

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

Application Layer 2-13

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Application Layer 2-14

Try SMTP interaction for yourself:

 telnet servername 25
 see 220 reply from server
 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client (reader)

Application Layer 2-15

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in
7-bit ASCII

 SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:
 HTTP: pull
 SMTP: push

 both have ASCII
command/response
interaction, status codes

 HTTP: each object
encapsulated in its own
response message

 SMTP: multiple objects
sent in multipart message

Application Layer 2-16

Mail message format

SMTP: protocol for
exchanging email messages

RFC 822: standard for text
message format:

 header lines, e.g.,
• To:
• From:
• Subject:
different from SMTP MAIL

FROM, RCPT TO:
commands!

 Body: the “message”
• ASCII characters only

header

body

blank
line

Application Layer 2-17

Mail access protocols

 SMTP: delivery/storage to receiver’s server
 mail access protocol: retrieval from server

• POP: Post Office Protocol [RFC 1939]: authorization,
download

• IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored messages on
server

• HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

Application Layer 2-18

POP3 protocol

authorization phase
 client commands:

• user: declare username
• pass: password

 server responses
• +OK
• -ERR

transaction phase, client:
 list: list message numbers
 retr: retrieve message by

number
 dele: delete
 quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application Layer 2-19

POP3 (more) and IMAP
more about POP3
 previous example uses

POP3 “download and
delete” mode
• Bob cannot re-read e-

mail if he changes
client

 POP3 “download-and-
keep”: copies of messages
on different clients

 POP3 is stateless across
sessions

IMAP
 keeps all messages in one

place: at server
 allows user to organize

messages in folders
 keeps user state across

sessions:
• names of folders and

mappings between
message IDs and folder
name

Application Layer 2-20

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-21

DNS: domain name system

people: many identifiers:
• SSN, name, passport #

Internet hosts, routers:
• IP address (32 bit) -

used for addressing
datagrams

• “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
• note: core Internet function,

implemented as application-
layer protocol

• complexity at network’s
“edge”

Application Layer 2-22

DNS: services, structure
why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized database
 maintenance

DNS services
 hostname to IP address

translation
 host aliasing

• canonical, alias names
 mail server aliasing
 load distribution

• replicated Web
servers: many IP
addresses correspond
to one name

A: doesn‘t scale!

Application Layer 2-23

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approximation:
 client queries root server to find com DNS server
 client queries .com DNS server to get amazon.com DNS server
 client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

Application Layer 2-24

DNS: root name servers

 contacted by local name server that can not resolve name
 root name server:

• contacts authoritative name server if name mapping not known
• gets mapping
• returns mapping to local name server

13 logical root name
“servers” worldwide
•each “server” replicated
many times

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

Application Layer 2-25

TLD, authoritative servers

top-level domain (TLD) servers:
• responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
• Network Solutions maintains servers for .com TLD
• Educause for .edu TLD

authoritative DNS servers:
• organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

• can be maintained by organization or service provider

Application Layer 2-26

Local DNS name server

 does not strictly belong to hierarchy
 each ISP (residential ISP, company, university) has

one
• also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
• has local cache of recent name-to-address translation

pairs (but may be out of date!)
• acts as proxy, forwards query into hierarchy

Application Layer 2-27

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Application Layer 2-28

45

6

3

recursive query:
 puts burden of name

resolution on
contacted name
server

 heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-29

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
• cache entries timeout (disappear) after some time (TTL)
• TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
• if name host changes IP address, may not be known

Internet-wide until all TTLs expire
 update/notify mechanisms proposed IETF standard

• RFC 2136

Application Layer 2-30

DNS records

DNS: distributed database storing resource records (RR)

type=NS
• name is domain (e.g.,

foo.com)
• value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname
 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
servereast.backup2.ibm.com

 value is canonical name

type=MX
 value is name of mailserver

associated with name

Application Layer 2-31

DNS protocol, messages

 query and reply messages, both with same message
format

message header
 identification: 16 bit # for

query, reply to query uses
same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-32

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-33

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
• provide names, IP addresses of authoritative name server

(primary and secondary)
• registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks
 bombard root servers

with traffic
• not successful to date
• traffic filtering
• local DNS servers cache

IPs of TLD servers,
allowing root server
bypass

 bombard TLD servers
• potentially more

dangerous

redirect attacks
 man-in-middle

• Intercept queries
 DNS poisoning
 Send bogus replies to

DNS server, which
caches

exploit DNS for DDoS
 send queries with

spoofed source
address: target IP

 requires amplification
Application Layer 2-34

Application Layer 2-35

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-36

Pure P2P architecture
 no always-on server
 arbitrary end systems

directly communicate
 peers are intermittently

connected and change
IP addresses

examples:
• file distribution

(BitTorrent)
• Streaming (KanKan)
• VoIP (Skype)

Application Layer 2-37

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-38

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies:
• time to send one copy: F/us

• time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network
di

ui

F

Application Layer 2-39

File distribution time: P2P

 server transmission: must
upload at least one copy
• time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Σui)}

 client: each client must
download file copy
• min client download time: F/dmin

 clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + Σui

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer 2-40

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-41

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

 file divided into 256Kb chunks
 peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer 2-42

 peer joining torrent:
• has no chunks, but will

accumulate them over time
from other peers

• registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers
 peer may change peers with whom it exchanges chunks
 churn: peers may come and go
 once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

Application Layer 2-43

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that
they have

 Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
• other peers are choked by Alice

(do not receive chunks from her)
• re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

Application Layer 2-44

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

Application Layer 2-45

Issues in P2P networks

• Centralized vs Distributed

• Joining/Leaving mechanisms

• User churn

• Selfish behavior

• Trust – pollution

• Security

Application Layer 2-46

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks (CDNs)

2.7 socket programming
with UDP and TCP

Application Layer 2-47

Video Streaming and CDNs: context

• Netflix, YouTube: 37%, 16% of downstream
residential ISP traffic

• ~1B YouTube users, ~75M Netflix users
 challenge: scale - how to reach ~1B

users?
• single mega-video server won’t work (why?)

 challenge: heterogeneity
 different users have different capabilities (e.g.,

wired versus mobile; bandwidth rich versus
bandwidth poor)

 solution: distributed, application-level
infrastructure

 video traffic: major consumer of Internet bandwidth

 video: sequence of images
displayed at constant rate
• e.g., 24 images/sec

 digital image: array of pixels
• each pixel represented

by bits
 coding: use redundancy

within and between images
to decrease # bits used to
encode image
• spatial (within image)
• temporal (from one

image to next)

Multimedia: video

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

Application Layer 2-48

Multimedia: video
 CBR: (constant bit rate):

video encoding rate fixed
 VBR: (variable bit rate):

video encoding rate changes
as amount of spatial,
temporal coding changes

 examples:
• MPEG 1 (CD-ROM) 1.5

Mbps
• MPEG2 (DVD) 3-6 Mbps
• MPEG4 (often used in

Internet, < 1 Mbps)

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

Application Layer 2-49

Streaming stored video:

simple scenario:

video server
(stored video)

client

Internet

Application Layer 2-50

Streaming multimedia: DASH

 DASH: Dynamic, Adaptive Streaming over HTTP
 server:

• divides video file into multiple chunks
• each chunk stored, encoded at different rates
• manifest file: provides URLs for different chunks

 client:
• periodically measures server-to-client bandwidth
• consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given
current bandwidth

• can choose different coding rates at different points
in time (depending on available bandwidth at time)

Application Layer 2-51

Streaming multimedia: DASH

 DASH: Dynamic, Adaptive Streaming over HTTP
 “intelligence” at client: client determines

• when to request chunk (so that buffer starvation, or
overflow does not occur)

• what encoding rate to request (higher quality when
more bandwidth available)

• where to request chunk (can request from URL server
that is “close” to client or has high available
bandwidth)

Application Layer 2-52

Content distribution networks

 challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

 option 1: single, large “mega-server”
• single point of failure
• point of network congestion
• long path to distant clients
• multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Application Layer 2-53

Content distribution networks

 challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

 option 2: store/serve multiple copies of videos at
multiple geographically distributed sites (CDN)
• enter deep: push CDN servers deep into many access

networks
• close to users
• used by Akamai, 1700 locations

• bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks
• used by Limelight

Application Layer 2-54

Content Distribution Networks (CDNs)

 subscriber requests content from CDN

 CDN: stores copies of content at CDN nodes
• e.g. Netflix stores copies of MadMen

where’s Madmen?
manifest file

• directed to nearby copy, retrieves content
• may choose different copy if network path congested

Application Layer 2-55

Content Distribution Networks (CDNs)

Internet host-host communication as a service

OTT challenges: coping with a congested Internet
 from which CDN node to retrieve content?
 viewer behavior in presence of congestion?
 what content to place in which CDN node?

“over the top”

more .. in chapter 7

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V
 video stored in CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob gets URL for video
http://netcinema.com/6Y7B23V
from netcinema.com web page

2
2. resolve http://netcinema.com/6Y7B23V
via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns URL
http://KingCDN.com/NetC6y&B23V 4

4&5. Resolve
http://KingCDN.com/NetC6y&B23
via KingCDN’s authoritative DNS,
which returns IP address of KingCDN
server with video

56. request video from
KINGCDN server,
streamed via HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

Application Layer 2-57

Case study: Netflix

1

1. Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2
2. Bob browses
Netflix video 3

3. Manifest file
returned for
requested video

4. DASH
streaming

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

Application Layer 2-58

	Web caches (proxy server)
	More about Web caching
	Caching example:
	Caching example: fatter access link
	Caching example: install local cache
	Caching example: install local cache
	Conditional GET
	Chapter 2: outline
	Electronic mail
	Electronic mail: mail servers
	Electronic Mail: SMTP [RFC 2821]
	Scenario: Alice sends message to Bob
	Sample SMTP interaction
	Try SMTP interaction for yourself:
	SMTP: final words
	Mail message format
	Mail access protocols
	POP3 protocol
	POP3 (more) and IMAP
	Chapter 2: outline
	DNS: domain name system
	DNS: services, structure
	DNS: a distributed, hierarchical database
	DNS: root name servers
	TLD, authoritative servers
	Local DNS name server
	DNS name �resolution example
	Slide Number 28
	DNS: caching, updating records
	DNS records
	DNS protocol, messages
	Slide Number 32
	Inserting records into DNS
	Attacking DNS
	Chapter 2: outline
	Pure P2P architecture
	File distribution: client-server vs P2P
	File distribution time: client-server
	File distribution time: P2P
	Slide Number 40
	P2P file distribution: BitTorrent
	Slide Number 42
	BitTorrent: requesting, sending file chunks
	BitTorrent: tit-for-tat
	Issues in P2P networks
	Chapter 2: outline
	Video Streaming and CDNs: context
	Multimedia: video
	Multimedia: video
	Streaming stored video:
	Streaming multimedia: DASH
	Streaming multimedia: DASH
	Content distribution networks
	Content distribution networks
	Slide Number 55
	Slide Number 56
	CDN content access: a closer look
	Case study: Netflix

