
EECS 3214 - S.Datta 1-1

EECS 3214:
Computer Network Protocols and Applications

Suprakash Datta

Course page: http://www.eecs.yorku.ca/course/3214

Office: LAS 3043

Email: datta [at] cse.yorku.ca
These slides are adapted from Jim Kurose’s slides.

9/26/2018

http://www.eecs.yorku.ca/course/3214

9/26/2018
EECS 3214 - S.Datta 2

Chapter 2: Application layer

 2.1 Principles of network applications
 2.2 Web and HTTP
 2.3 FTP
 2.4 Electronic Mail

 SMTP, POP3, IMAP
 2.5 DNS

9/26/2018
EECS 3214 - S.Datta 3

Some network apps
 E-mail
 Web
 Instant messaging
 Remote login
 P2P file sharing
 Multi-user network

games
 Streaming stored video

clips
 Social networking

Internet telephony
Real-time video

conference
Massive parallel computing
Search

9/26/2018
EECS 3214 - S.Datta 4

Creating a network app
Write programs that

 run on different end
systems and

 communicate over a
network.

 e.g., Web: Web server
software communicates
with browser software

No software written for
devices in network core
 Network core devices do

not function at app layer
 This design allows for

rapid app development

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

9/26/2018
EECS 3214 - S.Datta 5

Application architectures
 Client-server
 Peer-to-peer (P2P)
 Hybrid of client-server and P2P

9/26/2018
EECS 3214 - S.Datta 6

Client-server architecture
server:

 always-on host
 permanent IP address
 server farms for scaling

clients:
 communicate with server
 may be intermittently

connected
 may have dynamic IP

addresses
 do not communicate

directly with each other

9/26/2018 EECS 3214 - S.Datta 7

Pure P2P architecture
 no always on server
 arbitrary end systems

directly communicate
 peers are intermittently

connected and change IP
addresses

Highly scalable: self scalability
– new peers bring new
service capacity, as well as
new service demands

But difficult to manage

9/26/2018
EECS 3214 - S.Datta 8

Hybrid of client-server and P2P
Napster

 File transfer P2P
 File search centralized:

 Peers register content at central server
 Peers query same central server to locate content

Instant messaging
 Chatting between two users is P2P
 Presence detection/location centralized:

 User registers its IP address with central server when it
comes online

 User contacts central server to find IP addresses of
buddies

9/26/2018
EECS 3214 - S.Datta 9

Processes communicating

Process: program running
within a host.

 within same host, two
processes communicate
using inter-process
communication
(defined by OS).

 processes in different
hosts communicate by
exchanging messages

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

 Note: applications with
P2P architectures have
client processes & server
processes

9/26/2018 EECS 3214 - S.Datta 10

Sockets
 process sends/receives messages to/from its socket
 socket analogous to door

 sending process shoves message out door
 sending process relies on transport infrastructure on

other side of door which brings message to socket at
receiving process

 API: (1) choice of transport protocol; (2) ability to fix a few
parameters (lots more on this later)

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

processsocket

9/26/2018
EECS 3214 - S.Datta 11

Addressing processes
 For a process to

receive messages, it
must have an identifier

 A host has a unique32-
bit IP address

 Q: does the IP address
of the host on which
the process runs
suffice for identifying
the process?

 Answer: No, many
processes can be
running on same host

Identifier includes both
the IP address and
port numbers
associated with the
process on the host.

Example port numbers:
HTTP server: 80
Mail server: 25

More on this later

9/26/2018
EECS 3214 - S.Datta 12

App-layer protocol defines
 Types of messages

exchanged, eg, request
& response messages

 Syntax of message types:
what fields in messages
& how fields are
delineated

 Semantics of the fields,
ie, meaning of
information in fields

 Rules for when and how
processes send &
respond to messages

Public-domain protocols:
defined in RFCs
allows for interoperability
eg, HTTP, SMTP
Proprietary protocols:
eg, Skype

9/26/2018
EECS 3214 - S.Datta 13

What transport service does an app need?

Data integrity

 some apps (e.g., file
transfer, web transactions)
require 100% reliable data
transfer

 other apps (e.g., audio) can
tolerate some loss

Timing
some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

Throughput
 some apps (e.g.,

multimedia) require
minimum amount of
bandwidth to be
“effective”

 other apps (“elastic
apps”) make use of
whatever bandwidth they
get

security
 encryption, data integrity,

…

9/26/2018
EECS 3214 - S.Datta 14

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

9/26/2018
EECS 3214 - S.Datta 15

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum bandwidth
guarantees

UDP service:
unreliable data transfer

between sending and
receiving process

does not provide:
connection setup,
reliability, flow control,
congestion control,
timing, or bandwidth
guarantee

Q: why bother? Why is
there a UDP?

9/26/2018
EECS 3214 - S.Datta 16

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

9/26/2018
EECS 3214 - S.Datta 17

Securing TCP
TCP & UDP
 no encryption
 cleartext passwds

sent into socket
traverse Internet in
cleartext

SSL
 provides encrypted

TCP connection
 data integrity
 end-point

authentication

SSL is at app layer
Apps use SSL libraries,
which “talk” to TCP

SSL socket API
 cleartext passwds sent
into socket traverse Internet
encrypted
 See Chapter 7

9/26/2018
EECS 3214 - S.Datta 18

Chapter 2: Application layer
Next: Ch. 2.2 Web and HTTP
 Examine the web infrastructure

9/26/2018
EECS 3214 - S.Datta 19

Web and HTTP

First some jargon
 Web page consists of objects
 Object can be HTML file, JPEG image, Java applet,

audio file,…
 Web page consists of base HTML-file which includes

several referenced objects
 Each object is addressable by a URL
 Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

9/26/2018
EECS 3214 - S.Datta 20

HTTP overview
HTTP: hypertext

transfer protocol
 Web’s application layer

protocol
 client/server model

 client: browser that
requests, receives,
“displays” Web
objects

 server: Web server
sends objects in
response to requests

 HTTP 1.0: RFC 1945
 HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

9/26/2018
EECS 3214 - S.Datta 21

HTTP overview (continued)
Uses TCP:
 client initiates TCP

connection (creates socket)
to server, port 80

 server accepts TCP
connection from client

 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

 TCP connection closed

HTTP is “stateless”
server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

 past history (state) must
be maintained

 if server/client crashes,
their views of “state”
may be inconsistent,
must be reconciled

aside

9/26/2018
EECS 3214 - S.Datta 22

HTTP connections
Nonpersistent HTTP

 at most one object sent
over TCP connection
 connection then closed

 downloading multiple
objects required
multiple connections

 HTTP/1.0 uses nonpersistent
HTTP

Persistent HTTP
Multiple objects can be

sent over single TCP
connection between
client and server.

HTTP/1.1 uses persistent
connections in default
mode

9/26/2018
EECS 3214 - S.Datta 23

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/cs/index.html

1a. HTTP client initiates TCP connection
to HTTP server (process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)

9/26/2018
EECS 3214 - S.Datta 24

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

9/26/2018 EECS 3214 - S.Datta 25

Response time modeling
Definition of RTT: time to

send a small packet to
travel from client to
server and back.

Response time:
 one RTT to initiate TCP

connection
 one RTT for HTTP

request and first few
bytes of HTTP response
to return

 file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

9/26/2018
EECS 3214 - S.Datta 26

Persistent HTTP
Nonpersistent HTTP issues:
 requires 2 RTTs per object
 OS must work and allocate

host resources for each
TCP connection

 but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP
 server leaves connection

open after sending response
 subsequent HTTP messages

between same client/server
are sent over connection

Persistent without pipelining:
client issues new request

only when previous
response has been
received

one RTT for each
referenced object

Persistent with pipelining:
default in HTTP/1.1
client sends requests as soon

as it encounters a
referenced object

as little as one RTT for all
the referenced objects

9/26/2018
EECS 3214 - S.Datta 27

HTTP request message
 two types of HTTP messages: request, response
 HTTP request message:

 ASCII (human-readable format)

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return,
line feed at start
of line indicates
end of header lines

request line
(GET, POST,
HEAD commands)

carriage return character
line-feed character

9/26/2018
EECS 3214 - S.Datta 28

HTTP request message: general format

9/26/2018
EECS 3214 - S.Datta 29

Uploading form input
Post method:
 Web page often

includes form input
 Input is uploaded to

server in entity body

URL method:
Uses GET method
Input is uploaded in URL

field of request line:

www.somesite.com/animalsearch?monkeys&banana

9/26/2018
EECS 3214 - S.Datta 30

Method types
HTTP/1.0
 GET
 POST
 HEAD

 asks server to leave
requested object out of
response

HTTP/1.1
GET, POST, HEAD
PUT

uploads file in entity body
to path specified in URL
field

DELETE
deletes file specified in the

URL field

9/26/2018
EECS 3214 - S.Datta 31

HTTP response message

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02
GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-
8859-1\r\n
\r\n
data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

9/26/2018
EECS 3214 - S.Datta 32

HTTP response status codes

200 OK
 request succeeded, requested object later in this

message
301 Moved Permanently

 requested object moved, new location specified
later in this message (Location:)

400 Bad Request
 request message not understood by server

404 Not Found
 requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

9/26/2018
EECS 3214 - S.Datta 33

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

9/26/2018
EECS 3214 - S.Datta 34

User-server state: cookies
Many major Web sites use

cookies
Four components:

1) cookie header line in the
HTTP response message

2) cookie header line in
HTTP request message

3) cookie file kept on user’s
host and managed by
user’s browser

4) back-end database at
Web site

Example:
Susan access Internet

always from same PC
She visits a specific e-

commerce site for first
time

When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for ID

9/26/2018
EECS 3214 - S.Datta 35

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

9/26/2018
EECS 3214 - S.Datta 36

Cookies (continued)
What cookies can bring:
 authorization
 shopping carts
 recommendations
 user session state (Web e-

mail)

 how to keep “state”:
 protocol endpoints:

maintain state at
sender/receiver over
multiple transactions

 cookies: http messages
carry state

Cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name

and e-mail to sites
 search engines use

redirection & cookies to
learn yet more

 advertising companies
obtain info across sites

aside

	Slide Number 1
	Chapter 2: Application layer
	Some network apps
	Creating a network app
	Application architectures
	Client-server architecture
	Pure P2P architecture
	Hybrid of client-server and P2P
	Processes communicating
	Sockets
	Addressing processes
	App-layer protocol defines
	What transport service does an app need?
	Transport service requirements of common apps
	Internet transport protocols services
	Internet apps: application, transport protocols
	Securing TCP
	Chapter 2: Application layer
	Web and HTTP
	HTTP overview
	HTTP overview (continued)
	HTTP connections
	Nonpersistent HTTP
	Nonpersistent HTTP (cont.)
	Response time modeling
	Persistent HTTP
	HTTP request message
	HTTP request message: general format
	Uploading form input
	Method types
	HTTP response message
	HTTP response status codes
	Trying out HTTP (client side) for yourself
	User-server state: cookies
	Cookies: keeping “state” (cont.)
	Cookies (continued)

