
EECS 1710
Programming for Digital Media
Dr. Matthew Kyan
Dept. of Electrical Engineering & Computer Science
Fall 2018

Slides adapted from the course text: Java by abstraction:
A client-view approach (4th edition), H. Roumani (2015).

EECS 1710
Programming for Digital Media
Lecture 1 :: Course Introduction

Welcome

• Motivations
• Administrative
• Syllabus
• Assessment
• Resources
• Course Themes
• Software & Tools

Contact

• Instructor
Dr. Matthew Kyan
Associate Professor
Dept. of Electrical Engineering & Computer Science
Office: LAS 3030 (office hours: Thursday 2-4pm)
Tel: 416-736-2100 x33965
Email: mkyan (at) cse (dot) yorku (dot) ca

• TA’s
Mehrnaz Zhian
Email: mehrnaz (at) eecs (dot) yorku (dot) ca
Brian Wijeratne
Email: bwijerat (at) eecs (dot) yorku (dot) ca
Sean Delong
Email: seand (at) eecs (dot) yorku (dot) ca

Digital Media @ YorkU

• Provides a foundation in the computational basis for the
creation of digital media

o imagery and sound, animation, simulation, 2D/3D environments
o physical & tangible computing
o human computer interaction

• Explores theoretical, artistic and experiential ideas
o that lie behind an informed understanding of aesthetic & functional

aspects of digital media

• Engages in the practice of creating digital media works
o that explore the ways in which culture is produced and can be

produced through technology
o broader socio-cultural effects and the theory and research

concerning responses to and use of digital media.

Digital Media @ YorkU

Research Creation :: Science/Engineering R&D

‘creative coding’

goal: create something
‘expressive’ rather than
‘functional’

Pathways

What is Computer Science about?

• Study of process:
o how we do things, how we specify what we do, and how we

specify the stuff we are processing

o The study of “recipes” (programs/algorithms)
o Recipes can simulate real world environments/events, or
o Recipes can interface directly with real world

environments/events

What are Computer Scientists concerned with?

− How recipes are written (efficiently expressed and efficient execution/use of
resources)

− How a recipe works (core steps) as opposed to how it is written (algorithms)

− How units of information are represented and used in a recipe (data
structures)

− How to store and work with very large amounts of information (databases)

− How to design recipes that think/act intelligently? (artificial
intelligence/machine learning)

− Explore how people engage with recipes? (human computer
interface/interaction - HCI)

− Use of recipes to compose (e.g. graphics/music)
− Use of recipes to analyze

− What happens when lots of recipes communicate/interact with one another?
(networking)

• Recipes have aspects which are flexible/variable, …
(e.g. amount of ingredients)

• … and aspects which are quite fixed/restrictive
(e.g. type of some ingredients, order of steps, etc)

ultimately they serve as a template for a process (in which
certain ingredients are transformed into a result)

What do computers understand?

• What do computers understand?
§ Numbers – in fact, even less.. just high/low (on/off) voltages

• What is the concept of an “encoding”?
§ Uses high/low to “encode” things

o how many things can be encoded with a single “wire”?
o Multiple “wires”, encode more things (numbers, symbols, etc)

Imagine a “wire”
in 1 of 2 states:

has a voltage (ON)

no voltage (OFF)

Each state can represent a (symbolize) a different thing:
Therefore 2 things can be represented (e.g. 2 digits)?

How many wires needed to represent 10 digits (0,1,2,…,9)?

An encoding is a way of storing information

• We can store information in such encodings!

§ 10 digits requires 10 combinations of on/off

• 1 wire = 2 combinations

• 2 wires = 4 combinations

• 3 wires = 8 combinations

• 4 wires = 16 combinations

§ on/off voltages (bits) are the most basic unit of information

understood by a computer

§ numbers can be used to compute & store new numbers:

• 2 + 4

• 13 * 5 + (8 – 2)/3

need at least 4 “wires” to represent 10 digits

…

We can do more than just compute numbers

• Numbers can also be tested against other numbers
(conditional logic)

o e.g. are numbers the same/different, is one smaller/larger than
another, etc)

o Logic tests form a basis for making decisions, which can be
used to execute different options, resulting in different outcomes

• Encodings can be stored internally for the purpose of a
calculation, or can be used to drive (actuate) physical
equipment (e.g. screens, motors, lights, etc.)

o Manipulating encodings is a very exact mechanism..
o But can be very, very fast

Media Computation :: Why digitize media?

• Computers are good at encoding discrete parcels of information
o Images

• made up of tiny dots (pixels), sometimes millions of pixels per image
• each pixel holds a set of red, green and blue (r,g,b) components
• each component can be encoded by a set of bits!

o Audio
• Made up of tiny snapshots (samples) in time, usually 44,100+ samples per

second!!
• Each sample holds a set of bits to represent the amplitude of the sound wave

• Human perception blurs these discrete parcels of information together
o to form a “continuous” experience of images and sounds!
o think about a flick book animation

• a series of pictures each slightly different from the last, in a small notepad
• when you flick the pages, you see a moving image

Media Computation :: why study computation?

• Computers allow us to easily:
o digitize/store, but most importantly, deconstruct, manipulate, & reconstruct

media

• Digitizing also makes it easier to communicate:
o Securely send media over large distances (e.g. streaming parcels over the air

or internet)

• However, in our discipline (digital media):
o it allows us to be more than just content authors

o allows us to get “under-the-hood” and understand at a fundamental level, how
to construct/deconstruct and refashion media at the source!

• BONUS:
o studying computers is empowering almost a necessary literacy in today’s

world (useful for any industry)

Central themes explored (EECS intro courses)

• EECS 1710 & 1720
§ Programming from Clients point of view
§ 1710 – basic constructs and concepts
§ 1720 – assembly of more complex interactive programs

• EECS 1012
§ Introduction to web based (browser) programming
§ More emphasis on networking

• EECS 2030
§ Programming from Implementers point of view
§ (more challenging)

Client vs Implementer (analogy)

• CAR ≈ Program

CLIENT
This view creates programs by
assembling or ‘using’ different
(implemented) pieces, working
with each via their available
interface.

IMPLEMENTOR
This view creates program internals
from scratch (or assembly), then
defines an interface that can serve
the needs of possible clients (hiding
inner workings from client).

program (recipe)

EECS17xx
view

EECS2030
view

Course Description (extended)

• Introduction to program design and implementation
focusing on digital media elements, and focusing on
CLIENT perspective

§ sound, images, and animation; algorithms, simple data
structures, control structures, and debugging techniques

• Lays the conceptual foundation for the development and
implementation of Digital Media artefacts

Course Details
Course Title: EECS 1710: Programming for Digital Media
Term: Fall 2018

Lectures: Tuesday, Thursday: 10:00am – 11:20am

Location: LAS C

Laboratories: Thursday: 11:30pm – 1:30pm
Location(s): LAS 1006/1004
(supervised labs begin Week 2: Sept. 13-19)

Term Dates: Sep 5, 2018 – Dec 4, 2018
Study Day (Dec 5, 2018)
Exam Period (Dec 6 – Dec 21, 2018)

Last Day to Add: Sep 18, 2018 (without permission); Oct 2, 2018 (with)

Last Day to Drop: Nov 9, 2018 (no grade); Nov 10-Dec 4 (‘W’ on transcript)

Course Website: Hosted on Moodle (https://moodle.yorku.ca/)

	

Course Text

• NO OFFICIAL TEXTBOOK !!

• Useful Reference Texts
− M. Guzdial and B. Eriscon, “Introduction to Computing

& Programming with JAVA - A Multimedia Approach”,
ISBN 0-13-149698-0

− J. Lewis and W. Loftus, “Java Software Solutions”, 9th

Ed., ISBN-13: 9780134462028; Pearson, 2018.
− R. Sedgewick and K. Wayne, “Computer Science – An

Interdisciplinary Approach”; ISBN-13: 978-0-13-
407642-3; Addison-Wesley, 2017.

• Useful Reference Texts & tutorial links (will be posted on website)
• Selected Readings
• Website (Moodle)

Can rent on amazon
for the semester ($23)

A little more current

Moodle(s) ?

http://moodle.info.yorku.ca/

Course is here!

http://moodle.info.yorku.ca/

Labs

• Practice, make, practice, make, learn … (DATT 1000)
• Practice, break, practice, break, learn … (EECS 1710)

• Lab 0 – not supervised (week 1, on your own)
• Lab 1 – week 2
…

9 labs in total (including Lab 0)
Labs 1-8 will be formally submitted (15%)
Lab 1 (1%); Lab 2-8 (2% each)

Course Schedule
Week Topics Dates Activity
1 Course Introduction

JAVA basics
Sep 6 – Sep 12 Lab 0 (on own)

2 JAVA basics Sep 13 – Sep 19 Lab 1 exercises
3 Methods & Objects Sep 20 – Sep 26 Lab 2 exercises
4 Methods & Objects Sep 27 – Oct 3 Lab 3 exercises
 Arrays & Loops Oct 4 Lab 4 exercises
5 FALL READING DAYS Oct 8 – Oct 11
6 Arrays & Loops Oct 18 – Oct 24 MIDTERM (20%)

Lab 5 exercises
7 Decision Making Oct 25 – Oct 31 Lab Test #1 (15%)
8 Decision Making Nov 1 – Nov 7 Lab 6 exercises
9 Working with Graphics Nov 8 – Nov 14 Lab 7 exercises
10 Working with Graphics Nov 15 – Nov 21 Lab 8 exercises
11 Working with Sound Nov 22 – Nov 28 Lab Test #2 (15%)
12 Working with Sound

Course Review
Nov 29 – Dec 3
Dec 3

 FALL STUDY DAY Dec 5
 Exam Period Dec 6 – Dec 21 FINAL (TBD)
	

Course Evaluation
Item Weight (% of final grade) Due Date
Labs 15 (1 week after

scheduled lab session)
Lab Test 1 15 Oct 25 – Oct 31

(in scheduled lab session)
Lab Test 2 15 Nov 22 – Nov 28

(in scheduled lab session)
Midterm Exam 20 Oct 16

(in class)
Final Exam 35 TBD

TOTAL 100
	

Yet to be scheduled
(will be announced on

course website)

Academic Integrity

TUTORIAL http://www.yorku.ca/tutorial/academic_integrity/plagdef.html
POLICIES http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/

In doubt? ASK!!

http://www.yorku.ca/tutorial/academic_integrity/plagdef.html
http://secretariat-policies.info.yorku.ca/policies/academic-honesty-senate-policy-on/

Software/Tools

• Java (programming language)
• Eclipse (Integrated development environment - IDE)
• Linux Environment (operating system - OS)

• (at home) > virtual box + image of linux (CentOS)

tutorial posted on
course website

Resources

• Tutorials (will be linked/posted on course website)

• Java API
http://docs.oracle.com/jav ase/8/docs/api/

• Java Development Kit (JDK) (ver 7)
http://www.oracle.com/technetwork/java/javase/downloads/index.html

• Eclipse
https://eclipse.org/downloads/

• Oracle's Java Tutorials
http://docs.oracle.com/javase/tutorial/java/

• The type API – http://www.eecs.yorku.ca/teaching/docs/type-api/
• The imagePackage API

– http://www.eecs.yorku.ca/course_archive/2015-16/F/1710/imagePackageAPI/

http://docs.oracle.com/jav%20ase/8/docs/api/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://eclipse.org/downloads/
http://docs.oracle.com/javase/tutorial/java/
http://www.eecs.yorku.ca/teaching/docs/type-api/
http://www.eecs.yorku.ca/course_archive/2015-16/F/1710/imagePackageAPI/

General Course Advice

• Make USE of available resources:

− Academic advising services (every program of study has them)

o what courses should I take? should I drop some courses?

o should I change my program of study? I am unhappy with my

program but what other options do I have?

− Study supports (from your college, from your faculty)

o http://bethune.yorku.ca/ , http://winters.yorku.ca

o study groups, extra help

− Learning Skills Services

o http://lss.info.yorku.ca/

− Study skills workshops, on-line resources, etc.

http://bethune.yorku.ca/
http://winters.yorku.ca
http://lss.info.yorku.ca/

Why Java?

• Basis for Processing
• Basis for Android Programming
• Can deploy standalone or to browsers
• General Purpose
• Portable

• Serves as a good introduction to many programming
concepts and constructs

Basic Computer Architecture

Why Java?

• Intention: “WORA – Write Once, Run Anywhere”

− Most programming languages come with a compiler for a
particular type of CPU/architecture

− Java code is compiled into a common intermediary form
(bytecode) that can be interpreted at run-time on many
different architectures via the java virtual machine (JVM)

Your EECS System Account

• You require an EECS account to complete this course.

§ marked course material

§ course announcements

• Activate your account:

§ http://www.eecs.yorku.ca/activ8

§ This account can be used to access any of the PRISM Labs,

such as LAS1002, LAS1004, LAS1006, and others

§ Linux and Windows (machines can boot into either OS)

• disk quota, web space, print quota

Checklist – for next lecture

• get an EECS account (if you don’t have it already)
o warning!! it can take up to 24 hours to get the account. Plan

ahead.

• Start working on Lab 0
o [optional] – follow tutorial posted on course website (in Useful

Resources Section) for setting up your home computer/laptop
environment using an EECS virtual machine (VM); then use VM
to do lab 0

o Otherwise do lab 0 directly in the lab

