
EECS 1710
LAB 1 :: File System / Editing and Compiling Java Programs / Basic Syntax

Prerequisite (Lab 0) – please ensure that you have setup your PRISM account and can log
into the lab machines prior to starting this lab!

Also make sure you are familiar with the Linux terminal and how to launch the Eclipse
editor (see Lab 0, sections 3 & 4).

1) The Linux File System

If you are familiar with Windows, you might realize that each storage device (e.g. hard
drive) on the system is organized in a hierarchical way. For example, if you have one hard
drive on your computer, the drive would be referred to as a letter (e.g. C:). Files are then
organized within that particular drive into folders according to a specific hierarchy (folders
within folders). The top of this hierarchy (parent folder) is typically “C:\”, which then has
sub-folders (e.g. “C:\Windows”, or “C:\Program Files”, etc.). If you have other storage
devices, they have a different letter (e.g. D: or E:), and each has its own hierarchy of folders,
and so on. If you double click on one of the “Devices and drives” shown in the figure
below, you would be able to see the contents of that device/drive (its files and sub folders).

In Linux, similar is true, however the organization of all files on the system is extremely
simple. Basically, all files are organized into a single hierarchy (a folder is referred to as
a directory), beginning with the main (or parent) directory called “/”, which is known as
the root directory. In Lab 0, you may have browsed some of the file system already. The
command “cd” is used to do this (cd stands for “change directory”). The command “ls” is
used to list the contents of a directory (which may be files and/or other sub-directories).
While the “pwd” command (“pwd” stands for “print working directory”), was used to tell
you where you were currently located within the larger file system.

Here is a typical diagram of how files/directories are organized in Linux:

Of course, there are more folders typically than this. However, we are mostly concerned
with the home directory (/home), and its sub directories, which is where you will be
creating, storing and running most of your programs.

The home directory houses one directory for each user on the system (when you log into
Linux, you are auto-magically connected to your own directory). For instance, in the above
graphic, /home/mako is the directory belonging to the user “mako”, while
/home/jono is the directory belonging to the user “jono”. If jono logs into the system,
usually they will create files/sub-directories (such as work or photos) in their personal
home directory /home/jono. If you open a terminal and type “cd” you will always be
placed directly into your home directory (since the system knows who you are after login).

On your system you should have a sub directory in the home directory that has the same
name as your login name. If you are using the VM provided by EECS on your own laptop,
this will be typically be the name user (i.e. /home/user).

Task 1: Navigating the file system, recording command output, and submitting work.

In this first set of tasks, we are going to revise (and extend) your use of basic Linux
commands for moving around the file system, displaying contents of directories and files,
and creating new files. So far (Lab 0), you have used the following commands:

i) Firstly, lets open a terminal and navigate (using the “cd” command) to the root
folder on your system, and list its contents. Type:
cd /

(This points the terminal to the system’s root directory)

Type
pwd

(This shows you where you are w.r.t. the root folder “/”)

Type
ls -la

(this lists the files and their details in the current directory. Observe the output
in the terminal)

** see if you can confirm this using a file manager “Files” application (a
graphical way to access the same file system) – this can be launched by
selecting Places à Computer from the Places menu on your VM, or by
searching for Files in Activities.

ii) Now we will learn two new Linux commands: concatenate (cat) and redirect

(>) so that we can dump some output from the list command into a text file.

Type
cd

(This returns the terminal to your home directory)

Type
ls -la > output_homeDir

(this lists files in current directory and redirects (dumps) the resulting output
into a new file called “output_homeDir” instead of showing it on the screen)

Type
ls -la

(this lists the files in the current directory again, notice the new file that was
just created)

Type
cat output_homeDir

(this shows the contents of the file “output_homeDir” in the terminal window)

iii) Type

ls -la / > output_rootDir

(this lists the contents of the root directory, and redirects the output into a new
file called “output_rootDir”)

iv) Type
cat output_rootDir

(this outputs the contents of the file output_rootDir to the terminal window)

v) Finally, let’s learn a special command that you will use to submit components
of your lab work (for grading/assessment). We will do this directly from the
terminal in this instance (which assumes you are completing this step on a lab
machine‡). You may use “man submit” in the terminal also to see what the
various parts of the command represent (essentially, we are submitting all files
that start with “output_” in the current directory to the “lab1” assignment
defined under the course “1710”).

Type
submit 1710 lab1 output_*

(this will upload/send all the files that start with the word “output_” for
submission for lab1. Actually, we plan to submit a number of different files in
this lab. We can do each file separately, or in groups, or we can even submit
all the files in a given directory. However, we will usually be very specific
about what you will need to type to submit at various places in each lab (or in
a single location at the end of the lab document).

You should see some output indicating the files that were submitted. You can
always re-submit these files up until the lab deadline. Any files with the same
name submitted multiple times will just overwrite older versions of those files.

‡ Note: there is another way to submit files for a lab (if you are submitting
from home). This option is called web-submit. To submit files this way, you
need a browser pointed at the following URL:
 https://webapp.eecs.yorku.ca/submit/

If you use your EECS account name and password to login, you will see a screen like that
above (right). Choose 1710 from the Course dropdown menu, and you will see a list of
assignments that are open for submission (only listed if submission is available). In the
Assignment dropdown menu you will see lab1. Then you must individually Browse for
each file you want to submit (see the figure below-left). When you have chosen the files
to submit, hit the Submit Files button at the bottom of the page. The web page will then
indicate the files that have been successfully submitted (shown in the figure below-right).

** when labs are marked, feedback can also be accessed through this web-submit page!!

2. Editing, Compiling and Running Java Programs (Terminal vs. IDE)

In this part, we are going to compare two methods for creating our Java programs. The
first is using a very simple text editor (called gedit) and the terminal, while the second uses
the Eclipse Integrated Development Environment (IDE) – see Lab 0 for an introduction.

The first tool is all we really need to make simple programs, however there are many
advantages to using a full IDE. Most importantly, it helps simplify the process of
“building” our programs (i.e. converting our text file program “recipes” into bytecode that
the java virtual machine (JVM) can understand. The JVM ultimately translates the
bytecode into a set of instructions that a particular CPU can understand and execute – so
on an intel PC, it would translate into instructions a particular intel CPU can understand
(likewise for other hardware that differs from PC). Thus, Java is extremely portable, as
the recipes we define (write) once using the Java language specification can be translated
to run on many different computers and devices.

The process of creating a java program begins with editing a Java source file, which is
“compiled” into a bytecode version, and then “run”, at which point the bytecode is
interpreted by the JVM. Java source files have a name that ends with the extension *.java,
while bytecode (compiled) versions of these files have the extension *.class (Lecture 2):

TASK 2: Edit, Compile and Run simple Java programs in the terminal

i) Open a new terminal window, and use “pwd” to check you are in your home
directory.
pwd

ii) Let’s use a new command “mkdir” (make directory) to make a new directory in
your home folder called “lab1-2a”
mkdir lab1-2a

iii) Use “ls” to check the contents of our home directory
ls -la

iv) Use “cd” to switch into this new directory
cd lab1-2a

v) We can start the text editor (gedit) from the terminal (or from the Graphical User
Interface Menus (on the left/top of the desktop). Let’s use the terminal this time:
gedit HelloTerminal.java &

(This will create a new file in the current directory called “HelloTerminal.java”
and will open it using the application called “gedit”)

gedit is short for “graphical editor”. It is one of many text editors that could be
used in Linux (and is similar to Notepad in windows, or TextEdit in mac). It is very
easy to use, and opens with a blank window (a file with no text). The ampersand
symbol (“&”) in the above command just tells Linux to execute gedit in the
background, so we are still able to type commands into the terminal while gedit is
running (see figure below-left).

vi) Type the following text (or copy/paste) into the gedit window (figure above-right):

public class HelloTerminal {
 public static void main (String[] args) {

 System.out.println(“=========”);
 System.out.print(“Hello “);
 System.out.println(“Terminal!!”);
 System.out.println(“=========”);
 }
}

vii) Now save the file (click the Save button or hit CTRL+S) and keep gedit open.
Return to the terminal window, and let’s list the contents of the current directory
and cat the contents of the file we just edited

ls -la
cat HelloTerminal.java > output_HTgedit

(You should see the HelloTerminal.java file now, and its output should reflect the
source code you just typed into the editor – if you cannot see anything in the
output_HTgedit file, then you need to make sure you save properly in the gedit
editor – if there is an asterisk showing, then this means the file still needs saving)

Now save the file (click the Save button or hit CTRL+S) and keep gedit open.
Return to the terminal window, list the contents of the current directory and cat the
contents of the file you just edited into a new text file, and submit it:

ls -la
cat HelloTerminal.java > output_HTgedit
submit 1710 lab1 output_*

(You should see the HelloTerminal.java file now, and its output should reflect the
content of the source file)

viii) The command javac is used to compile java source code (which converts
the text source file into bytecode for the JVM). Type:

ls -la
javac HelloTerminal.java
ls -la > output_HTdirAfterCompile
submit 1710 lab1 output_*

ls -la

(You should now see a file called HelloTerminal.class)

Run the java program in the terminal window (Type) and observe the output:

java HelloTerminal

You should see the following:
java HelloTerminal

TASK 3: Edit, Compile and Run simple Java programs in Eclipse

i) Launch the Eclipse IDE (as you did in Lab 0). Keep the workspace as “eclipse-
workspace”. Open a new project called “lab1-3” using the method in Lab 0. Now
create a new class called “HelloEclipse”.

ii) Copy the text in the main method over from the gedit window to the Eclipse editor
window, paste it and save the project. Then edit the main method so that the
program outputs “Hello Eclipse” in place of “Hello Terminal”.

iii) Now, before we build and run the project from the IDE, let’s find where all the
source files generated and edited from within Eclipse are located. Open another
terminal and cd to the home directory, then cd to “eclipse-workspace”. Cd again
to the project directory (you should have called it “lab1-3”). Use “ls” command to
check that the directory exists in the eclipse workspace. The location of the files
generated by the IDE will be different to the location of the HelloTerminal program
created in the previous step.

iv) List the contents of the lab1-3 directory, there should be only one java file (or there
may be a .class file if the Projectà”Build Automatically” option in the Eclipse
main menu is checked). Uncheck this option and select Project à Clean (this
should remove any .class files). Use “ls -la” to list all the contents. Notice that this
folder has some other files too.. these are project settings files used by the IDE.

v) Build and Run the project in the IDE by clicking on the green “play” button in the
Eclipse window. Notice the output does not show in a terminal, but rather, shows
in the console window within Eclipse! When using the IDE we typically edit, build
and run programs entirely within the IDE. Details of compiling and where these
components actually reside on the computer are hidden. But this does not mean we
cannot access them. You will see that the terminal allows us to access the java
source code and JVM bytecode for this project.

vi) We could also potentially run the HelloEclipse program manually from within the
terminal: do this by typing the following into the terminal:
java HelloEclipse

vii) Submit your source file for the HelloEclipse (from the terminal):

Submit 1710 lab1 HelloEclipse.java

TASK 3: Importing an Archived Project and Completing Tasks within

In this task, you will learn how to import an archived project into your Eclipse workspace,
where you may then continue with the lab (exercises are embedded within the project with
instructions commented in the *.java files),

3a. First, download the Lab 1 project file from the following link:

This file is a zip file, also known as an archive file. Click (or double-click) on the file to
download it. In the dialog, choose Save, not Open.

http://www.eecs.yorku.ca/course_archive/2018-19/F/1710/labs/lab1/lab1.zip

** save this to your downloads folder, and we will import into Eclipse from there.

Open (expand) the project in the Project Explorer:

