Chapter 1 introduction to Programming

Figure 1.18 The
hierarchy of
numeric types

The compiler detects the need
x double for conversion in three situations:
% A when the two operands of
f loat an operator are not the g:ime
' # when both operands are of
&y % o the type byte, or
3 long S B when the type of the RHS is
%. % %, different from that of the LHS.
B int) If the required conversion involves
\] 5 | promotion, it is done automatically;.
but if it involves a demotion, then a
I ' [compile-time error is triggered.
byte . short char If you are willing to take

responsibility for the possible

consequences, you can manually cast a value from one numeric type to another with the
cast operator. The cast operator is a unary prefix operator (precedence level: -3; associa-
tiom: right to left) whose symbol is the name of the type sandwiched between two parenthe-
ses. For example, you can take responsibility for the conversion in the lfast assignment of
Example 1.5 by rewriting it as

int result = (int) (100 * dvar);

Example 1.5

Provide a critique of the following fragment:

int ivar = 15;

long 1lVar = 2; ’ ‘
float f£Var = 7.6f - ‘ivar / iVar;
double dVar = 1L /.lVar + fVar / 1Var;
int result = 100 * dvar; '
System,out.println (result) ;

Answer:

The first assignment involves a single type and is straightforward. The second has an int
RHS and a long LHS. The compiler will auto-promote the RHS to long; that is, the com-
piler will proceed as if the RHS contains 2L. The third assignment involves a mixed expres-
sion, and the computation will begin with the / operator. Since its two operands are not of
the same type, one of them will be auto-promoted to the other. This will resolve the over-"
Ioaded operator to'the one offered by the long type. The quotient of 15L and 2L is 7L. Still
in the same staterment, we see a second mixed expression involving a £1loat and a long, so
we convert the long to a £loat and subtract 7F from 7.68 This yields 0.68 and its type is
the same as that of the LHS. The next assignment involves two divisions. The left one has
same-type operands (Long) and yields OL. The right one requires a promotion from long
to float, and it yields 0.3E To complete the assignment, this value is auto-promoted to

ts the need
situations:

ands of
same
l are of

:RHS is
2 LHS.

n involves
omatically;
ion, then a
wgered.
g to take
possible
r with the
3; associa-
parenthe-
mment of

an int
the com-
3 expres-
renot of
1€ over-
is 7L. Stifl
. long, so
its type is
me has
ym long
ed to

1.3 The Assignment Statement

double so that it matches the LHS. The very last assignment involves an int and a
double, and its RHS evaluates to the double value 30.0. Completing the assignment
requires demoting this value to an int, and this leads to a compile-time error.

2 . ‘

In this case, the fragment will compile. Pay special attention to the way casting was done. Had
we written

int result = (int} 100 * dvar;

the error would have persisted. This is because the cast operator has a higher precedence than
multiplication so it will cast the 100, not the product, and this is not what we wanted.

The output generated by the fragment may surprise you: it is 29, not 30, If you consi_\der
this difference significant, then you should not have casted,

Casting up the hierarchy of Fig. 1.18 is safe but unneeded since the compller does it auto-
matically, Casting down, however, should generally be avoided, or used with caution, except for
one common (and safe) situation: to select the real / operator instead of the integer one. For
example, to compute the average number of hits per second, we may write something like

hitg / seconds

where both operands are Long. This will not compute the sought average (due to truncation)
50 we cast

{double} hits / seconds
This will cast hits to double, which forces a promotion of geconds to double, thereby

selecting the / of the type double. Note that the following two casting variations also result
in a double, but only one of them (the second) will lead to the sought result:

(double) (hits / seconds)
hits / (double} seconds

Assignment Shortcuts

We conclude our coverage of the assignment statement by mentioning a shortcut: any assign-
ment of the form

variable = wvariable operator expression;

can be abbreviated as

variable operator= expression;

Here are some examples:

hits += &; isshortfor hitg = hits + §;
hits *= count; isshortfor hits = hits * count;

Assignment is treated in Java as an operator with the symbol =, precedence level -15, and
right-to-left association. Appendix B contains a precedence table of all operators in Java, and at
level —15, assignment has the lowest precedence. This is precisely how assignment is meant to work:
evaluate all operators in the expression on the RFS before the assignment operation is carried out.
The assignment shortcuts are also operators, and they have the same level and association rule as
the assignment operator.

Chapter 1 introduction to Programming

Example |.6 -

Provide a critique of thefollowing fragment:
; char letter = 'D';
letter = {char) {letter + 1);
System.out .printin{lettexr) ;
int code = lettexr;
System.out.printin{code) ;
| ; int offset = letter - ‘Af;
! . i System.out.printin(cffset);

‘: ' ! Answer:
In the first assignment, the types are compatible (both are char) so the code of 'D' will
be stored in letter. (According to Appendix A, this code is 68, but we do not need to
; . know this in order to reason about this fragment.) The second assignment contains the
expression

letter + 1 b
The two operands have different types {char and int}, so we auto-promote the char
and use the + of the int type. The result is an int, and in order to store it in letter,
we must demote it by a manual cast. This leads to the code of the character that follows
: . 'D*,whichis 'E'. The first output will thus be E. What happened behind the scene is
that 'D' was converted to 68, 68 was incremented to 69, and then 69 was converted to
'E*Y,
The next assignment,

int ¢ode = lettexr;
assigns a char to an int. Since the RHS is lower, it gets auto-promoted to an int. The

. end result is to store the code of 'E' in’code. The second output will thus be the code

b . of code of 'E" {which is 69).
The next statement includes the expression

letter - 'AT
Both operands are of the type char, but this type has no'operators. Hence, both must be
promoted up the hierarchy (Fig. 1.18) to int. This leads to subtracting the code of &
from the code of B, and since alphabetically consecutive letters have consecutive codes,
. this difference is the int 4. The third output will thus be 4, .
- i Example 1.6 demonstrates how type casting is used to manipulate values whose type does
not provide operator support. The values are first cast to int, where they can be manipulated,
h and then cast back.

