Collections

EECS1012 H—
MoBILE COMPUTING

COLLECTIONS

(SLIDES ADAPTED FROM PROF.H. ROUMANI)

PROF. Y. LESPERANCE
Dept. of Electrical Engineering & Computer Science

ARRAYS (SEE SEC. L.2.1.E)

= Represent a collection of entities of the same
type

= Declaration: type[] name; e.g. int[] bag;

» |[nstantiation: new typelsize], e.g.
bag = new int[100];

= Refer to elements by namelindex], e.g.
bag[0] = 123; bag[1] = bag[0] + 5;

EECS1022/Lespérance

ABOUT COLLECTIONS

= Problem: naming a bunch of things
Cannot use variables ... will run out of names!

= Solutions
Traditional approach: name + index = array
Modern approach: object with API = list, set, map

= Comparison
Arrays have no APl and suffer from fixed allocation
The modern collection framework has a rich API

= But we occasionally use arrays
For compatibility with low-level API (e.g. split and args)

ARRAYS (SEE SEC. L.2.1.E)

= name.length represents the array’s length
» |ndices go from 0 to length —1

= Multidimensional arrays can also be used

Collections

ExAMPLE 1 JAVA COLLECTION FRAMEWORK

If we pick an integer in [1,1M] randomly, how likely is = List vs Set vs Map

it to get one whose digit sum is divisible by 7? List: may contain duplicates and elements are ordered. Set: no

duplicates and no order. Map: key-value pairs, key unique.
Compute the probability by sampling 10% of those integers

and store the sample in a collection. The Interfaces (aka Abstract Data Types)
List<E>, Set<E>, and Map<K,V> (use generics)
Use Arrays .
See SumDIiv7_array.java The Classes (aka Implementations)
List: ArrayList and LinkedyList; Set: HashSet and TreeSet
Use Collections Map: HashMap and TreeMap
See SumDiv7_coll.java
Common APlIs
size(), clear(), iterator(), toString()
Methods to insert, delete, and search = CRUD

THE COLLECTIONS API NOTES ON COLLECTIONS

add(E e) on a set returns false if e is already
size() add(E) add(int, E) in it (for a list always returns true)

clear() remove(E) remove(int)

iterator() contains(E) getfint) remove(E e) returns true iff e is found in the
set or list; for a list removes only first

occurrence

R e U] The enhanced for leop Collections.sort(List <E>) rearranges | to
tainsKey(K) Collections.sort(List) . .
— S make it sorted (according to natural order)

containsValue(V) Arrays... see API
Arrays.asList(E[] a) returns a List
representation of array a

EECS1022/Lespérance

Collections

NOTES ON COLLECTIONS

= Traversing a List<E> bag i.e. going through all of its elements
one by one, is a common operation:

for (E e: bag) {
System.out.printin(e);
1
= Similarly for sets
= For lists, can also do an indexed traversal:
for (inti=0; i< bag.size(); i++) {

E e = bag.get(i); System.out.printin(e);

EXAMPLE 2 — SORTING-BASED SOLUTION

Collections.sort(bag);
boolean distinct = true;
for (int 1 = 0; | < bag.size() - 1; i++) {
distinct = distinct && !bag.get(i).equals(bag.get(i+1));
}
= Can also exit as soon as a duplicate is found:
for (inti=0; i< bag.size() — 1 && distinct; i++) {
distinct = lbag.get(i).equals(bag.get(i+1));

EECS1022/Lespérance

EXAMPLE 2

Given a list, determine whether it contains duplicate
elements.

Can be done in 3 ways:

Sort the list and then traverse it to check for adjacent
duplicates

Create a set and then try to add each list element to it
checking if add succeeds

Traverse the list, and for each element traverse the list
again to see if it occurs elsewhere

EXAMPLE 2 — SET-MAKING SOLUTION

Set<Integer> tmp = new HashStet<Integer>();
boolean distinct = true;
for (int 1 = 0; | < bag.size() ; i++) {

distinct = distinct && tmp.add(bag.get(i));

}

= Can also exit as soon as a duplicate is found:

for (inti=0; i< bag.size() && distinct; i++) {
distinct = tmp.add(bag.get(i)) ;

Collections

EXAMPLE 2 — TRAVERSAL-BASED SOLUTION EXAMPLE 3

Iterator<Integer> outer = bag.iterator(); Given a long sentence, find all its words; the distinct
boolean distinct = true; ones (regardless of case); display them; sort them;

while (outer.hasNext() && distinct) { and then locate the longest and most frequent ones.

Integer x = outer.next(); A "word" is defined as a sequence of characters terminated by

Iterator<Integer> inner= bag.iterator(); space, punctuation, or end-of-string.

while (inner.hasNext() && distinct) { 1. Use split with a regex
Integer y = inner.next(); 2. Turn array to a collection

o 3. Use collection API
distinct = Ix.equals(y) || x=y;
See WordSmith.java

EXERCISES INHERITANCE IN A NUTSHELL

Given a list<E>, pick a random element from it. * Abstract Declaration
Given a set<E>, pick a random element from it. Reserve a spot for a "GTA university student”, a "YU student”,

Given a map<K,V>, pick a random value from it. an "EECS student", ... Expect a parent but accept a child.
Removes Redundancy

Given a list<E>, print it sorted or reverse-sorted.
If classes A and B share 80% of the methods, why not put those

Given two lists <E>, merge them.
Given two lists <E>, intersect them.

methods in parent class C and have A and B extend it.

Exercises Control
If classes A and B share 80% of the API, why not put the shared
API headers in interface C and have A and B implement it.

Given a map<K,V>, invert it assuming distinct values.
Given a map<K,V>, invert it using largest value to break ties.
Given a map<K,V>, invert it into <V, List<K>>

o000 OO0 O00OE

Provides Defaults
All Java classes extend Object. Android gadgets extend View.

16

EECS1022/Lespérance

