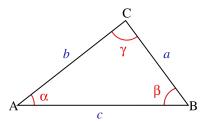
EECS4421Z: Introduction to Robotics Sample Midterm

Name:	
Student Number:	

Instructions

- 1. You have 110 minutes to complete the exam.
- 2. Write your answers clearly and succintly in the space provided on the question sheets; use the back of the page and the extra blank page if you need additional space for your answer.
- 3. A non-programmable calculator is allowed but should not be necessary. No other aids are allowed.

Law of cosines:



$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Trigonometric identities:

$$\sin(-\theta) = -\sin(\theta)$$
$$\cos(-\theta) = \cos(\theta)$$

$$\sin(180 - \theta) = \sin(\theta)$$
$$\cos(180 - \theta) = -\cos(\theta)$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\cos^2\theta + \sin^2\theta = 1$$

Canonical rotation matrices:

$$R_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \qquad R_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \qquad R_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation about a unit axis $[k_x k_y k_z]^T$:

$$R_{k,\theta} = \begin{bmatrix} k_x^2 v_{\theta} + c_{\theta} & k_x k_y v_{\theta} - k_z s_{\theta} & k_x k_z v_{\theta} + k_y s_{\theta} \\ k_x k_y v_{\theta} + k_z s_{\theta} & k_y^2 v_{\theta} + c_{\theta} & k_y k_z v_{\theta} - k_x s_{\theta} \\ k_x k_z v_{\theta} - k_y s_{\theta} & k_y k_z v_{\theta} + k_x s_{\theta} & k_z^2 v_{\theta} + c_{\theta} \end{bmatrix}$$

where $c_{\theta} = \cos \theta$, $s_{\theta} = \sin \theta$, and $v_{\theta} = 1 - \cos \theta$.

Homogeneous translation matrix for a translation of $[x \ y \ z]^T$:

$$D = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg transformation:

$$T_i^{i-1} = R_z(\theta_i)D_z(d_i)D_x(a_i)R_x(\alpha_i)$$

$$= \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg parameters:

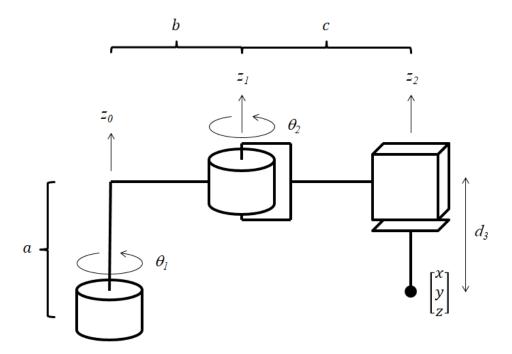
 a_i : distance between z_{i-1} and z_i measured along x_i

 α_i : angle from z_{i-1} to z_i measured about x_i

 d_i : distance between o_{i-1} to the intersection of x_i and z_{i-1} measured along z_{i-1}

 θ_i : angle from x_{i-1} to x_i measured about z_{i-1}

1. Consider the following RRR robot:



The robot is shown in a position where all of the joint angles are zero degrees and d_3 is some positive value. For the purposes of this question, assume that there are no limits on the joint parameters.

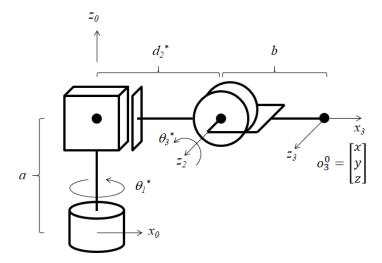
- (a) Draw coordinate frames $\{0\}$, $\{1\}$, $\{2\}$, and $\{3\}$ that are suitable for use with the Denavit-Hartenberg convention.
- (b) Fill in the Denavit-Hartenberg parameters using your coodinate frame placement.

Link	a_i	α_i	d_i	$ heta_i$
1				
2				
3				

(c) Solve for the forward kinematics of the arm; that is, given joint parameters θ_1^* , θ_2^* , and d_3^* , find the orientation and position of frame $\{3\}$ as a homogeneous matrix T_3^0 . If your solution involves a sequence of matrix multiplications then you do not need to perform the actual multiplications. Do not use the Denavit-Hartenberg convention to obtain your answer.

Use this page for Question 1.

2. Consider the RPR arm shown in Figure 2.



The prismatic joint of the robot has length $5 \le d_2^* \le 10$. The range of joint 1 is $0^\circ \le \theta_1^* < 360^\circ$ and the range of joint 3 is $-170^\circ \le \theta_3^* \le 170^\circ$ The exact values of a and b are not important, but assume that a > b and b < 5.

- (a) For which values of θ_3^* does there exist a unique solution to the inverse kinematics problem?
- (b) Given o_3^0 solve the inverse kinematics problem (i.e., given values for x, y, and z solve for the values of θ_1^* , d_2^* , and θ_3^*).

Use this page for Question 2 if necessary.

3.	Given a 3×3 rotation matrix R that transforms 3-dimensional points, prove that the transpose R^T is equal to the inverse R^{-1} .