EECS4421Z: Introduction to Robotics Midterm

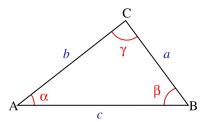
Instructor: Dr. Burton Ma Thu Feb 15, 2018

Name:			
Student Number:			

Instructions

- 1. You have 110 minutes to complete the exam.
- 2. Write your answers clearly and succintly in the space provided on the question sheets; use the back of the page and the extra blank page if you need additional space for your answer.
- 3. A non-programmable calculator is allowed but should not be necessary. No other aids are allowed.

Law of cosines:



$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Trigonometric identities:

$$\sin(-\theta) = -\sin(\theta)$$
$$\cos(-\theta) = \cos(\theta)$$

$$\sin(180 - \theta) = \sin(\theta)$$
$$\cos(180 - \theta) = -\cos(\theta)$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\cos^2\theta + \sin^2\theta = 1$$

Canonical rotation matrices:

$$R_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \qquad R_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \qquad R_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation about a unit axis $[k_x k_y k_z]^T$:

$$R_{k,\theta} = \begin{bmatrix} k_x^2 v_{\theta} + c_{\theta} & k_x k_y v_{\theta} - k_z s_{\theta} & k_x k_z v_{\theta} + k_y s_{\theta} \\ k_x k_y v_{\theta} + k_z s_{\theta} & k_y^2 v_{\theta} + c_{\theta} & k_y k_z v_{\theta} - k_x s_{\theta} \\ k_x k_z v_{\theta} - k_y s_{\theta} & k_y k_z v_{\theta} + k_x s_{\theta} & k_z^2 v_{\theta} + c_{\theta} \end{bmatrix}$$

where $c_{\theta} = \cos \theta$, $s_{\theta} = \sin \theta$, and $v_{\theta} = 1 - \cos \theta$.

Homogeneous translation matrix for a translation of $[x \ y \ z]^T$:

$$D = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg transformation:

$$T_i^{i-1} = R_z(\theta_i)D_z(d_i)D_x(a_i)R_x(\alpha_i)$$

$$= \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg parameters:

 a_i : distance between z_{i-1} and z_i measured along x_i

 α_i : angle from z_{i-1} to z_i measured about x_i

 d_i : distance between o_{i-1} to the intersection of x_i and z_{i-1} measured along z_{i-1}

 θ_i : angle from x_{i-1} to x_i measured about z_{i-1}