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Why Probabilistic Robotics?
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 autonomous mobile robots need to accommodate the 
uncertainty that exists in the physical world

 sources of uncertainty
 environment
 sensors
 actuation
 software
 algorithmic

 probabilistic robotics attempts to represent uncertainty using 
the calculus of probability theory
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Pr(A) denotes probability that proposition A is true.







Axioms of Probability Theory

1)Pr(0 ≤≤ A

1)Pr( =True

)Pr()Pr()Pr()Pr( BABABA ∧−+=∨

0)Pr( =False



4

A Closer Look at Axiom 3
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Using the Axioms
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Discrete Random Variables

 X denotes a random variable.

 X can take on a countable number of values in {x1, x2, 
…, xn}.

 P(X=xi ), or P(xi ), is the probability that the random 
variable X takes on value xi. 

 P( ∙ ) is called probability mass function.



Discrete Random Variables
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 fair coin

 fair dice

P(X=heads) = P(X=tails) = 1/2

P(X=1) = P(X=2) = P(X=3) = P(X=4) = P(X=5) = P(X=6) = 1/6



Discrete Random Variables
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 sum of two fair dice

P(X=2) (1,1) 1/36
P(X=3) (1,2), (2,3) 2/36
P(X=4) (1,3), (2,2), (3,1) 3/36
P(X=5) (1,4), (2,3), (3,2), (4,1) 4/36
P(X=6) (1,5), (2,4), (3,3), (4,2), (5,1) 5/36
P(X=7) (1,6), (2,5), (3,4), (4,3), (5,2), (6, 1) 6/36
P(X=8) (2, 6), (3, 5), (4,4), (5,3), (6, 2) 5/36
P(X=9) (3, 6), (4, 5), (5, 4), (6, 3) 4/36
P(X=10) (4, 6), (5, 5), (6, 4) 3/36
P(X=11) (5, 6), (6, 5) 2/36
P(X=12) (6, 6) 1/36



Discrete Random Variables
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 plotting the frequency of each possible value yields the 
histogram
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Continuous Random Variables

 X takes on values in the continuum.

 p(X=x), or p(x), is a probability density function.

 E.g.
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Continuous Random Variables

 unlike probabilities and probability mass functions, a 
probability density function can take on values greater than 1
 e.g., uniform distribution over the range [0, 0.1]

 however, it is the case that
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Continuous Random Variables
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 normal or Gaussian distribution in 1D
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Continuous Random Variables
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 1D normal, or Gaussian, distribution
 mean
 standard deviation
 variance
σ

2σ=Σ

µ



Continuous Random Variables
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 2D normal, or Gaussian, distribution
 mean
 covariance matrix ( )
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Continuous Random Variables
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 in 2D
 isotropic
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Continuous Random Variables
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 in 2D
 anisotropic
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Continuous Random Variables
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 in 2D
 anisotropic
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Continuous Random Variables
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 in 2D
 anisotropic
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Covariance matrices
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 the covariance matrix is always symmetric and positive semi-
definite

 positive semi-definite:

 positive semi-definiteness guarantees that the eigenvalues of Σ
are all greater than or equal to 0

𝑥𝑥𝑇𝑇Σ𝑥𝑥 ≥ 0 for all 𝑥𝑥
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>> [v, d] = eig([1 0; 0 4])

v =

1     0
0     1

d =

1     0
0     4
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>> [v, d] = eig([2.5 1.5; 1.5 2.5])

v =

-0.7071    0.7071
0.7071    0.7071

d =

1     0
0     4
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Joint Probability

 the joint probability distribution of two random 
variables

P(X=x and Y=y) = P(x,y)

describes the probability of the event that X has the 
value x and Y has the value y

 If X and Y are independent then 
P(x,y) = P(x) P(y)



Joint Probability
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 the joint probability distribution of two random variables

P(X=x and Y=y) = P(x,y)

describes the probability of the event that X has the value x
and Y has the value y

 example: two fair dice

P(X=even and Y=even) = 9/36
P(X=1 and Y=not 1) = 5/36



Joint Probability
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 example: insurance policy deductibles

$0 $100 $200

$100 0.20 0.10 0.20

$250 0.05 0.15 0.30

home

automobile

x

y



Joint Probability and Independence
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 X and Y are said to be independent if

P(x,y) = P(x) P(y)

for all possible values of x and y

 example: two fair dice

P(X=even and Y=even) = (1/2) (1/2)
P(X=1 and Y=not 1) = (1/6) (5/6)

 are X and Y independent in the insurance deductible example?



Marginal Probabilities
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 the marginal probability distribution of X

describes the probability of the event that X has the value x

 similarly, the marginal probability distribution of Y

describes the probability of the event that Y has the value y
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Joint Probability
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 example: insurance policy deductibles

$0 $100 $200

$100 0.20 0.10 0.20

$250 0.05 0.15 0.30

home

automobile
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y



Conditional Probability
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 the conditional probability P(x | y) = P(X=x | Y=y) is the 
probability of P(X=x) if Y=y is known to be true
 “conditional probability of x given y”

YX ∧X Y
True



Conditional Probability
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Conditional Probability
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 “information changes probabilities”
 example:
 roll a fair die; what is the probability that the number is a 3?

 what is the probability that the number is a 3 if someone tells you 
that the number is odd? is even?



Conditional Probability
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 “information changes probabilities” 
 example:
 pick a playing card from a standard deck; what is the probability that 

it is the ace of hearts?

 what is the probability that it is the ace of hearts if someone tells 
you that it is an ace? that is a heart? that it is a king?



Conditional Probability
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 if X and Y are independent then 
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Bayes Formula

evidence
prior likelihood
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Bayes Rule 
with Background Knowledge
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Back to Kinematics
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Probabilistic Robotics
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 we seek the conditional density

 what is the density of the state

given the motion command

performed at
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Probabilistic Robotics
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Velocity Motion Model
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 assumes the robot can be controlled through two velocities
 translational velocity
 rotational velocity

 our motion command, or control vector, is

 positive values correspond to forward translation and 
counterclockwise rotation
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Velocity Motion Model
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Velocity Motion Model
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 center of circle

where



Velocity Motion Model
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