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Why Probabilistic Robotics?

» autonomous mobile robots need to accommodate the
uncertainty that exists in the physical world

» sources of uncertainty
environment
SENSOors
actuation
software
algorithmic
» probabilistic robotics attempts to represent uncertainty using
the calculus of probability theory
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Axioms of Probability Theory

Pr(A) denotes probability that proposition A is true.
»  0<Pr(A)<1

» Pr(True) =1 Pr(False) =0
»  Pr(Av B)=Pr(A)+Pr(B)-Pr(AAB)




A Closer Look at Axiom 3

Pr(Av B) =Pr(A)+Pr(B)—-Pr(AA B)

True

A AAB B




Using the Axioms

Pr(Av—A) = Pr(A)+Pr(=A)—-Pr(Aa—-A)
Pr(True) = Pr(A)+Pr(—A)—-Pr(False)
1 = Pr(A) + Pr(—=A)-0

Pr(-A) = 1-Pr(A)



Discrete Random Variables

» X denotes a random variable.

» X can take on a countable number of values in {x,, x,,

ey X}

» P(X=Xx; ), or P(x. ), is the probability that the random
variable X takes on value x.

» P(+) is called probability mass function.



Discrete Random Variables

» fair coin
P(X=heads) = P(X=tails) = 1/2
» fair dice

P(X=1) = P(X=2) = P(X=3) = P(X=4) = P(X=5) = P(X=6) = 1/6
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Discrete Random Variables

» sum of two fair dice

P(X=2) |(1,1) 1/36
P(X=3) |(1,2), (2,3) 2/36
P(X=4) |(1,3), (2.2, (3,1) 3/36
P(X=5) | (L,4), (2,3), (3,2), (4,1) 4/36
P(X=6) | (L5), (2,4), (3,3), (4,2), (5,1) 5/36
P(X=7) | (16), (2,5), (3,4), (43), (5.2), (6,1)  |6/36
P(X=8) |(2,6), (3,5), (4,4), (53), (6, 2) 5/36
P(X=9) |(3,6), (4,5), (5, 4), (6, 3) 4/36
P(X=10) | (4, 6), (5, 5), (6, 4) 3/36
P(X=11) | (5, 6), (6, 5) 2/36
P(X=12) | (6, 6) 1/36

2/4/2018



Discrete Random Variables

» plotting the frequency of each possible value yields the
histogram
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Continuous Random Variables

» X takes on values in the continuum.

» b(X=x), or p(x), is a probability density function.

Pr(x e (a,b)) = i p(x)dx

» E.g. Pt
s
/ \\




Continuous Random Variables

» unlike probabilities and probability mass functions, a
probability density function can take on values greater than 1

e.g., uniform distribution over the range [0, 0.1]

» however, it is the case that

f_o:op(x)dx =1



Continuous Random Variables

» normal or Gaussian distribution in 1D

1 _ (x=p)°
2
p(x) = =€
27O

10 | | I | | I T | | | | |

u =0, 0%=0.2, ==—| |

/'\ [1=0, 07?=1.0, =——

0.8 I { \ yzo! 0‘2:5.0! e | ]

- H=-2, 0°=0.5, ===/

0.6

0.4

0.0 —— —(
1 I 1 | I 1 1 | 1 1

12 2/4/2018




Continuous Random Variables

» 1D normal, or Gaussian, distribution
H mean
o standard deviation
Y = (72 variance
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Continuous Random Variables

» 2D normal, or Gaussian, distribution

[l mean 1 — ) = (xp)
X) = e
P(x) Jdet(27%)

Y. covariance matrix
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Continuous Random Variables

» in 2D 3
isotropic
0
Y= ok

15 2/4/2018



Continuous Random Variables

» in 2D 6
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Continuous Random Variables

» in 2D 6
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Continuous Random Variables

» in 2D 6
anisotropic
25 15
e ok
15 25

18 2/4/2018



Covariance matrices

» the covariance matrix is always symmetric and positive semi-
definite

» positive semi-definite:
xT'Yx = 0 for all x

» positive semi-definiteness guarantees that the eigenvalues of X
are all greater than or equal to 0
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>> [v,d] = eig([I 0;0 4])6
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>> [v, d] = eig([2.5 1.5 I.

-0.7071 0.7071
0.7071 0.7071
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Joint Probability

» the joint probability distribution of two random
variables

P(X=x and Y=y) = P(X,y)

describes the probability of the event that X has the
value X and Y has the value y

» If X andY are independent then
P(x.y) = P(x) P(y)



Joint Probability

» the joint probability distribution of two random variables
P(X=xand Y=y) = P(x,y)

describes the probability of the event that X has the value X
and Y has the value y

» example: two fair dice

P(X=even and Y=even) = 9/36
P(X=1 and Y=not 1) = 5/36
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Joint Probability

» example: insurance policy deductibles

Y
$0 $100 $200
< | $100 0.20 0.10 0.20
$250 0.05 0.15 0.30

automobile

24

<— home
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Joint Probability and Independence

» X andY are said to be independent if
P(x,y) = P(x) P(y)
for all possible values of X and y

» example: two fair dice

P(X=even and Y=even) = (1/2) (1/2)
P(X=1and Y=not 1) = (1/6) (5/6)

» are X and Y independent in the insurance deductible example?
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Marginal Probabilities

» the marginal probability distribution of X
I:)X (X) = z P(X1 y)
y

describes the probability of the event that X has the value X

» similarly, the marginal probability distribution of Y
I:)Y (y) — Z P(X1 y)
X

describes the probability of the event that Y has the value y
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Joint Probability

» example: insurance policy deductibles

Y
$0 $100 $200
< | $100 0.20 0.10 0.20
$250 0.05 0.15 0.30

automobile
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Conditional Probability

» the conditional probability P(x | y) = P(X=x | Y=Y) is the
probability of P(X=Xx) if Y=y is known to be true

28

» “conditional probability of X given y”

True

X
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Conditional Probability

29

P(A)~0.3

P(A
P(A
P(A

B3):?
Bl):?
Bz):?
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Conditional Probability

» “information changes probabilities”

» example:
roll a fair die; what is the probability that the number is a 3?

what is the probability that the number is a 3 if someone tells you
that the number is odd? is even!?
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Conditional Probability

» “information changes probabilities”

» example:

pick a playing card from a standard deck; what is the probability that
it is the ace of hearts?

what is the probability that it is the ace of hearts if someone tells
you that it is an ace?! that is a heart? that it is a king?
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Conditional Probability

P(X,Y)

P(x]y)= P(y)

» if Xand Y are independent then
P(x,y)=P(X)P(y)

POOPY) _ pey

S P(x|y) = p(y)
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Bayes Formula

P(X,y) = P(x]y)P(y) = P(y | x)P(x)

—

P(y|x) P(x) likelihood - prior

P(x|y) =
\ ( ‘y); P(Y) evidence

posterior
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Bayes Rule
with Background Knowledge

P(y|x,z) P(x]|2)

T



Back to Kinematics

Figure 5.1 Robot pose, shown in a global coordinate system.

pose vector or state X, =

35
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} location (in world frame)

]’ bearing or heading
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Probabilistic Robotics

» we seek the conditional density

P(X | Uy X,_;)

» what is the density of the state
Xt

given the motion command

performed at

36
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Probabilistic Robotics

(a) (b)

a e

Figure 5.2 The motion model: Posterior distributions of the robot’s pose upon ex-
ecuting the motion command illustrated by the solid line. The darker a location,
the more likely it is. This plot has been projected into 2-D. The original density is
three-dimensional, taking the robot’s heading direction ¢ into account.
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Velocity Motion Model

» assumes the robot can be controlled through two velocities
translational velocity V

rotational velocity @
» our motion command, or control vector, is
Vt

U, =
W

» positive values correspond to forward translation and
counterclockwise rotation
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Velocity Motion Model
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Velocity Motion Model

» center of circle

( r* ) _ ( r ) N —Asin _ EE_E: +uly — )
y* Y Acos f Y 42’ — )
where

(x — 2')cos@ + (y — y')sinf

=
|
Lo | =

(y —y')cos® — (x —x')sinéb
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Velocity Motion Model

1: Algorithm motion_model_velocity(a;, u:, 24— 1):
5 1 (x—2")cosO + (y —y')sinb
; L= —
=3 (y —y’')cos — (x — 2')sin b
xr+
> ==ty —y)
, ay!
4: T 2 J; J 4 pu(z' —x)
5 r= VT TR P
6: AO = atan2(y’ — y*, 2" — ") —atan2(y — y", 2 — 2")
A6
7 0= —1r*
At
Af
8 W= —
At
A 6 —-0
T TAt g
10: return prob(v — U, a1 |v| + as|w|) - prob(w — w, as|v| + a4|w|)
- prob (¥, as|v| + ag|w])
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