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Inverse Kinematics
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 given the pose of the end effector, find the joint variables that 
produce the end effector pose

 for a 6-joint robot, given

find
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RPP + Spherical Wrist
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RPP + Spherical Wrist
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 solving for the joint variables directly is hard
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Kinematic Decoupling
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 for 6-joint robots where the last 3 joints intersecting at a 
point (e.g., last 3 joints are spherical wrist) there is a simpler 
way to solve the inverse kinematics problem
1. use the intersection point (wrist center) to solve for the first 3 

joint variables
 inverse position kinematics

2. use the end-effector pose to solve for the last 3 joint variables
 inverse orientation kinematics



RPP Cylindrical Manipulator
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RPP Cylindrical Manipulator
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RPP Cylindrical Manipulator
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RPP Cylindrical Manipulator
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RPP Cylindrical Manipulator
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RRP Spherical Manipulator
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Given ݋௖ ൌ
௖ݔ
௖ݕ
௖ݖ

find ߠଵ , ଶߠ , ݀ଷ



RRP Spherical Manipulator
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RRP Spherical Manipulator
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RRP Spherical Manipulator
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RRP Spherical Manipulator
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Spherical Wrist
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Link ai i di i
4 0 -90 0 4*
5 0 90 0 5*
6 0 0 d6 6*

* joint variable



Spherical Wrist
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Spherical Wrist
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Inverse Kinematics Recap
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1. Solve for the first 3 joint variables q1, q2, q3 such that the 
wrist center oc has coordinates

2. Using the results from Step 1, compute 
3. Solve for the wrist joint variables q4, q5, q6 corresponding to 

the rotation matrix
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Spherical Wrist
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 for the spherical wrist
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Spherical Wrist
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Spherical Wrist
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Spherical Wrist
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 if θ5 = 0 
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Spherical Wrist
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 continued from previous slide
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Using Inverse Kinematics in Path 
Generation
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Path Generation
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 a path is defined as a sequence of configurations a robot 
makes to go from one place to another

 a trajectory is a path where the velocity and acceleration 
along the path also matter



Joint-Space Path
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 a joint-space path is computed considering the joint variables

link 1

link 2

end effector path



Joint-Space Path Joint Angles
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 linear joint-space path

link 1

link 2



Joint-Space Path
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 given the current end-effector pose

and the desired final end-effector pose

find a sequence of joint angles that generates the path 
between the two poses

 idea
 solve for the inverse kinematics for the current and final pose to get 

the joint angles for the current and final pose
 interpolate the joint angles

T0

Tf



Joint-Space Path
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Joint-Space Path
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find 0Q from 0T
find fQ from fT
 t = 1 / m
Q = fQ – 0Q
for j = 1 to m
tj = j  t
jQ = 0Q + tj  Q
set joints to jQ

end



Joint-Space Path
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 linearly interpolating the joint variables produces
 a linear joint-space path
 a non-linear Cartesian path

 depending on the kinematic structure the Cartesian path can 
be very complicated
 some applications might benefit from a simple, or well defined, 

Cartesian path



Cartesian-Space Path
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 a Cartesian-space path considers the position of end-effector

link 1

link 2

end effector path



Cartesian-Space Path Joint Variable 1
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 non-linear joint-space path



Cartesian-Space Path Joint Variable 2
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 non-linear joint-space path



Issues with Cartesian-Space Paths
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Joint Velocity Issues
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 consider the RR robot shown below
 assume that the second joint can rotate by ±180 degrees



Joint Velocity Issues

1/29/201838

 what happens when it is commanded to follow the straight 
line path shown in red?



Joint Velocity Issues
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Joint Velocity Issues
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jump discontinuity in first derivative = infinite rotational acceleration

steep slope = high rotational velocity



Workspace
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 the reachable workspace of a robot is the volume swept by the 
end effector for all possible combinations of joint variables
 i.e., it is the set of all points that the end effector can be moved to



Workspace
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 consider the RR robot shown below
 assume both joints can rotate by 360 degrees



Workspace
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 rotating the second joint through 360 degrees sweeps out the 
set of points on the dashed circle



Workspace
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 rotating the first and second joints through 360 degrees 
sweeps out the set of all points inside the outer dashed circle



Workspace
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 workspace consists of all of the points inside the gray circle



Workspace
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 workspace consists of all of the points inside the gray circle



Workspace
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 consider the RR robot shown below where the second link is 
shorter than the first

 assume both joints can rotate by 360 degrees



Workspace
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 rotating the second joint through 360 degrees sweeps out the 
set of points on the dashed circle



Workspace
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 workspace consists of all of the points inside the gray area



Workspace
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 consider the following straight line path shown in red
 start point, end point, and all points in between are reachable



Workspace
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 consider the following straight line path shown in red
 start point and end point are reachable, but some points in 

between are not reachable



Paths satisfying end point constraints
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Joint-Space Path
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 a joint-space path is computed considering the joint variables

link 1

link 2
end effector path



Joint-Space Path Joint Angles
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 linear joint-space path

link 1

link 2



Constraints
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 in the previous example we had two constraints for joint 1:
1. ଵߠ ൌ 60଴

2. ଵߠ ൌ 270௙

 the simplest path satisfying these constraints is the straight 
line path

 if we add more constraints then a straight line path may not 
be able to satisfy all of the constraints



Velocity constraints
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 a common constraint is that the robot starts from a stationary 
position and stops at a stationary positions
 in other words, the joint velocities are zero at the start and end of 

the movement
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 more generally, we might require non-zero velocities
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Acceleration constraints
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 for smooth motion, we might require that the acceleration at 
the start and end of the motion be zero
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 more generally, we might require non-zero accelerations
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Satisfying the constraints

1/29/201858

 given some set of constraints on a joint variable our goal is 
to find that satisfies the constraints

 there are an infinite number of choices for 
 it is common to choose “simple” functions to represent ݍ ݐ



Satisfying the constraints with polynomials
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 suppose that we choose to be a polynomial
 if we have constraints then we require a polynomial with 

coefficients that can be chosen to satisfy the constraints
 in other words, we require a polynomial of degree ݊ െ 1



Satisfying the constraints with polynomials
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 suppose that we have joint value and joint velocity constraints
1. ݍ ଴ݐ ൌ ଴ݍ
2. ݍ ௙ݐ ൌ ௙ݍ
3. ሶݍ ଴ݐ ൌ ଴ݒ
4. ሶݍ ௙ݐ ൌ ௙ݒ

 we require a polynomial of degree 3 to represent 
 ݍ ݐ ൌ ܽ ൅ ݐܾ ൅ ଶݐܿ ൅ ଷݐ݀

 the derivative of is easy to compute
 ሶݍ ݐ ൌ ܾ ൅ ݐ2ܿ ൅ ଶݐ3݀



Satisfying the constraints with polynomials
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 equating and to each of the constraints yields:

1. ݍ ଴ݐ ൌ ଴ݍ ൌ ܽ ൅ ଴ݐܾ ൅ ଴ଶݐܿ ൅ ଴ଷݐ݀

2. ݍ ௙ݐ ൌ ௙ݍ ൌ ܽ ൅ ௙ݐܾ ൅ ௙ଶݐܿ ൅ ௙ଷݐ݀

3. ሶݍ ଴ݐ ൌ ଴ݒ ൌ ܾ ൅ ଴ݐ2ܿ ൅ ଴ଶݐ3݀

4. ሶݍ ௙ݐ ൌ ௙ݒ ൌ ܾ ൅ ௙ݐ2ܿ ൅ ௙ଶݐ3݀

which is a linear system of 4 equations with 4 unknowns 
(



Example
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 consider the following constraints where the robot is 
stationary at the start and end of the movement

1. ݍ ଴ݐ ൌ ߠ 0 ൌ 10
2. ݍ ௙ݐ ൌ ߠ 3 ൌ 80
3. ሶݍ ଴ݐ ൌ ሶߠ 0 ൌ 0
4. ሶݍ ௙ݐ ൌ ሶߠ 3 ൌ 0



Example: Joint angle
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cubic

ߠ 0 ൌ 10

ߠ 3 ൌ 80



Example: Joint velocity
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quadratic

ሶߠ 0 ൌ 0 ሶߠ 3 ൌ 0



Example: Joint acceleration
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linear



Satisfying the constraints with polynomials
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 suppose that we have joint value, joint velocity, and joint 
acceleration  constraints
1. ݍ ଴ݐ ൌ ଴ݍ
2. ݍ ௙ݐ ൌ ௙ݍ
3. ሶݍ ଴ݐ ൌ ଴ݒ
4. ሶݍ ௙ݐ ൌ ௙ݒ
5. ሷݍ ଴ݐ ൌ ଴ߙ
6. ሷݍ ௙ݐ ൌ ௙ߙ



Satisfying the constraints with polynomials
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 we require a polynomial of degree 5 to represent 
 ݍ ݐ ൌ ܽ ൅ ݐܾ ൅ ଶݐܿ ൅ ଷݐ݀ ൅ ସݐ݁ ൅ ହݐ݂

 the derivatives of are easy to compute
 ሶݍ ݐ ൌ ܾ ൅ ݐ2ܿ ൅ ଶݐ3݀ ൅ ଷݐ4݁ ൅ ସݐ5݂

 ሷݍ ݐ ൌ 2ܿ ൅ ݐ6݀ ൅ ଶݐ12݁ ൅ ଷݐ20݂



Satisfying the constraints with polynomials
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 equating , , and to each of the constraints yields:

1. ݍ ଴ݐ ൌ ଴ݍ ൌ ܽ ൅ ଴ݐܾ ൅ ଴ଶݐܿ ൅ ଴ଷݐ݀

2. ݍ ௙ݐ ൌ ௙ݍ ൌ ܽ ൅ ௙ݐܾ ൅ ௙ଶݐܿ ൅ ௙ଷݐ݀

3. ሶݍ ଴ݐ ൌ ଴ݒ ൌ ܾ ൅ ଴ݐ2ܿ ൅ ଴ଶݐ3݀

4. ሶݍ ௙ݐ ൌ ௙ݒ ൌ ܾ ൅ ௙ݐ2ܿ ൅ ௙ଶݐ3݀

5. ሷݍ ଴ݐ ൌ ଴ߙ ൌ 2ܿ ൅ ଴ݐ6݀ ൅ ଴ଶݐ12݁ ൅ ଴ଷݐ20݂

6. ሷݍ ௙ݐ ൌ ௙ߙ ൌ 2ܿ ൅ ௙ݐ6݀ ൅ ௙ଶݐ12݁ ൅ ௙ଷݐ20݂

which is a linear system of 6 equations with 6 unknowns 
(



Example
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 consider the following constraints where the robot is 
stationary at the start and end of the movement, and the joint 
accelerations are zero at the start and end of the movement

1. ݍ ଴ݐ ൌ ߠ 0 ൌ 10
2. ݍ ௙ݐ ൌ ߠ 3 ൌ 80
3. ሶݍ ଴ݐ ൌ ሶߠ 0 ൌ 0
4. ሶݍ ௙ݐ ൌ ሶߠ 3 ൌ 0
5. ሷݍ ଴ݐ ൌ ሷߠ 0 ൌ 0
6. ሷݍ ௙ݐ ൌ ሷߠ 3 ൌ 0



Example: Joint angle
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quintic

ߠ 0 ൌ 10

ߠ 3 ൌ 80



Example: Joint velocity
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quartic

ሶߠ 0 ൌ 0 ሶߠ 3 ൌ 0



Example: Joint acceleration
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cubic

ሷߠ 3 ൌ ሷߠ0 0 ൌ 0


