EECS4421: Lab 5

Thu Mar 22, 2018
Due: End of class on Fri Mar 30, 2018

1. Implement an extended Kalman filter (EKF) where the plant model and the measurement model are non-linear.
Use your EKF to solve the following localization problem:

Suppose that you have an omnidirectional (slide 32 from the Kalman filter examples lecture) robot moving in an
environment with two point landmarks m; and my and a known goal location g. The coordinates of the landmarks
are my; = [5 0]7 and mg = [10 0]7. The coordinates of the goal are g = [15 — 2]7. At each time step, the robot
can move one unit towards the goal (in a straight line from its estimated current position towards the goal); this is
the control input u;. Assume that the control input is accurate (has zero mean error) but has covariance R:

0.252 0
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The plant model for the robot is:

x
xt:{] +us+ ¢
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where [ ] is the estimated location of the robot at time ¢ — 1 and ¢ is a zero mean Gaussian random variable
t—1

with covariance 2. The plant model is not linear, because the control u; depends on the estimated state Lj

t—1
Assume that the robot is equipped with a sensor that can measure the distance to each landmark simultaneously and
unambiguously (i.e., the robot can measure the distance from its true location to both landmarks and it knows which
landmark produces which distance measurement). Assume that the distance measurement is accurate (has zero mean
error) but has variance equal to 0.252. In other words, each measurement is

2t = |:d1:| +4

where d; is the distance to landmark 1, d- is the distance to landmark 2, and ¢ is the zero mean Gaussian measurement
noise with covariance )
0.25 0

0  0.252

(a) What is the matrix G obtained after linearizing the plant model? Write a Matlab function:

function G = plant_jacobian (xs)



that returns the plant model Jacobian matrix G evaluated at xs where xs is [y] the estimated location of the
t—1
robot at time ¢ — 1.

(b) What is the matrix H; obtained after linearizing the measurement model? Write a Matlab function:

function H = meas_jacobian (xt)

that returns the measurement model Jacobian matrix H evaluated at xt where xt is Lj the predicted location of

t
the robot at time ¢.

(c) Implement the EKF (using the two functions that you wrote in parts (a) and (b)) for the robot. Write the Matlab
function:

function [mu, Sigma] = ekf (mu, Sigma, u, z)

that returns the estimated state mu and covariance matrix Sigma at time ¢ given the estimated state mu at time
(t —1), the estimated covariance Sigma at time (¢ — 1), the control input u at time ¢, and the observation z at time ¢
(Note: Matlab allows return variables having the same name as the parameters which is why mu and Sigma appear
as return values and function parameters; if this bothers you, feel free to change either the return variable names or
the parameter names).

Using the script from the course web site, show the localization results using your EKF at each time step ¢t =
0,1,2,...,25. Your plots should show the estimated location of the robot (using the EKF) and the true location of
the robot. Show the results for two different estimates of the starting location x¢:
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The true starting position of the robot is always

My results using o = [0 9]7 are shown below:
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(d) The results using zo = [0 — 5]7 should be quite different. Explain why the two different starting points produce
such different results.

Submit your written explanation for question (d); you may submit this electronically with your Matlab files if you

wish. Submit Matlab scripts (your implementation of the EKF and the scripts needed to produce your two plots) for
question (c).

submit 4421 labb your-matlab-files



