Consider the mobile robot shown in Figure 1.

$\xrightarrow[x_{w}]{y_{w} \uparrow}$
Figure 1: A mobile robot with constant bearing relative to the world frame $\{W\}$.
The state of robot x_{t} at time t is the position of the robot

$$
x_{t}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

expressed in the world coordinate frame $\{W\}$. Note that the bearing of the robot never changes, and is not considered in this question.

The robot can move freely in the directions along its x_{r} axis and its y_{r} axis (x_{r} is always anti-parallel to y_{w} and y_{r} is always parallel to x_{w}). The control input u_{t} for the robot at time t is:

$$
u_{t}=\left[\begin{array}{l}
v_{x_{r}} \\
v_{y_{r}}
\end{array}\right]
$$

where $v_{x_{r}}$ is the linear velocity in direction x_{r}, and $v_{y_{r}}$ is the linear velocity in direction y_{r}.
Develop a velocity motion model for the robot; i.e., provide an algorithm that computes $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$.

