
EECS4221/5324: Lab 1 Written Questions

Posted: Sun Jan 14, 2018
Due: in class Wed Jan 25, 2018

1. Find the 4× 4 homogeneous transformation matrix (showing the numeric values for all 16 elements)
T 0
1 where:

(a) {1} has the same orientation as {0} and the origin of {1} is translated relative to the origin of
{0} by d01 =

[
5 −5 10

]T .

T 0
1 =


1 0 0 5
0 1 0 −5
0 0 1 10
0 0 0 1

 (1)

(b) The origin of {1} is coincident with the origin of {0}, and x̂01 = −ẑ00 , ŷ01 = −x̂00, and ẑ01 = ŷ00 .

T 0
1 =


0 −1 0 0
0 0 1 0
−1 0 0 0
0 0 0 1

 (2)

(c) The origin of {1} is translated relative to the origin of {0} by d01 =
[
0 0 −10

]T , and the
orientation of {1} relative to {0} is the same as in part (b).

T 0
1 =


0 −1 0 0
0 0 1 0
−1 0 0 −10
0 0 0 1

 (3)

(d) The origin of {0} is translated relative to the origin of {1} by d10 =
[
0 0 −10

]T , and the
orientation of {1} relative to {0} is

x̂01 =
[
0.9971 −0.0292 −0.0705

]T ,

ŷ01 =
[
−0.0292 0.7083 −0.7053

]T , and

ẑ01 =
[
0.0705 0.7053 0.7053

]T .

Show how you derived the solution for part (d).

You are given R0
1 and d10, which allows you to compute T 1

0 :

1



T 1
0 =

 (R0
1)
T d10

0 0 0 1


Finding (T 1

0 )
−1 (perhaps using Matlab) yields T 0

1 :

T 0
1 =


0.9971 −0.0292 0.0705 0.0705
−0.0292 0.7083 0.7053 7.053
−0.0705 −0.7053 0.7053 7.053

0 0 0 1

 (4)

2. Find the missing elements of the following rotation matrices. Show your work, or explain your rea-
soning. It may be the case that there is no unique solution, in which case you should find all possible
solutions. Hint: Consider using the cross product.

(a)

· 1 0
· 0 0
· 0 −1


The columns of the rotation matrix are x01, y01 , and z01 . x01 is equal to the cross product of y01 and
z01 :

x01 = y01 × z01 =

01
0

 (5)

(b)

 ·
√
3/2 0

· 0 1√
3/2 · 0


The magnitude of each column of the rotation matrix is equal to 1. Therefore, the missing
element r32 of the second column can be found as:

(
√
3/2)2 + 02 + r232 = 12 ⇒ r32 = ±1/2

The first column can then be found using the cross product; if r32 = 1/2 then:

x01 = y01 × z01 =

−1/20√
3/2


If r32 = −1/2 then:

x01 = y01 × z01 =

 1/2
0√
3/2



(c)

0 0 1
· · 0
· · 0
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Let the missing elements of the matrix be: 0 0 1
a b 0
c d 0


Using the cross product we have:

x01 × y01 =

ad− bc0
0

 = z01 =

10
0


Thus:

ad− bc = 1

The squared magnitude of the first column of the rotation matrix is:

a2 + c2 = 1

From the previous two equations we can conclude that:

d = a and b = −c

and the rotation matrix is: 0 0 1
a −c 0
c a 0


Using the trigonometric identity cos2 α+ sin2 α = 1 we can always express the rotation matrix as: 0 0 1

cosα − sinα 0
sinα cosα 0


for some angle α; however, α is not equal to the angle of the rotation.

But could we not choose a = sin γ and c = cos γ for some value γ? Well, yes, but: 0 0 1
sin γ − cos γ 0
cos γ sin γ 0

 =

 0 0 1
cos(90− γ) − sin(90− γ) 0
sin(90− γ) cos(90− γ) 0


so substituting α = 90− γ yields  0 0 1

cosα − sinα 0
sinα cosα 0


Using various trigonometric identities, you can verify that all 8 possible choices of a and c yield
rotation matrices that can be expressed as 0 0 1

cosα − sinα 0
sinα cosα 0


for some value α. The 8 choices of a and c are:

3



a c

cos γ sin γ
cos γ − sin γ
− cos γ sin γ
− cos γ − sin γ
sin γ cos γ
sin γ − cos γ
− sin γ cos γ
− sin γ − cos γ

3. Consider the following 4× 4 homogeneous transformation matrices:

Rx,a : rotation about x by an angle a

Ry,a : rotation about y by an angle a

Rz,a : rotation about z by an angle a

Dx,a : translation along x by a distance a

Dy,a : translation along y by a distance a

Dz,a : translation along z by a distance a

Write the matrix product giving the overall transformation for the following sequences (do not perform
the actual matrix multiplications):

(a) The following rotations all occur in the moving frame.

i. Rotate about the current z-axis by angle φ.
ii. Rotate about the current y-axis by angle θ.

iii. Rotate about the current z-axis by angle ψ.

Note: This yields the ZY Z-Euler angle rotation matrix.

Rz,φRy,θRz,ψ

(b) The following rotations all occur in a fixed (world) frame.

i. Rotate about the world x-axis by angle ψ.
ii. Rotate about the world y-axis by angle θ.

iii. Rotate about the world z-axis by angle φ.

Note: This yields the roll, pitch, yaw (RPY) rotation matrix.

Rz,φRy,θRx,ψ

(c) The following transformations all occur in the moving frame.

i. Rotate about the current z-axis by angle θi.
ii. Translate along the current z-axis by a distance di.

iii. Translate along the current x-axis by a distance ai.
iv. Rotate about the current x-axis by angle αi.
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Note: This is the Denavit-Hartenberg transformation matrix.

Rz,θiDz,diDx,aiRx,αi

(d) The following transformations occur in a fixed (world) frame and in a moving frame.

i. Rotate about the world x-axis by angle φ.
ii. Rotate about the world z-axis by angle θ.

iii. Rotate about the current x-axis by angle ψ.
iv. Rotate about the world z-axis by angle α.

Rz,α((Rz,θRx,φ)Rx,ψ)
Note: The parentheses are not necessary and are shown to indicate the order in which the rota-
tions occur.

4. Prove or disprove the following statement:

DkRk,θ = Rk,θDk

whereRk,θ is the homogeneous form of the rotation matrix shown on Slide 67 of the first set of lecture
slides, and Dk is the translation matrix:

Dk =


1 0 0 kx
0 1 0 ky
0 0 1 ky
0 0 0 1


Note that k2x + k2y + k2z = 1.

Partition the matrices into blocks like so:

DkRk,θ =

 I3×3

kxky
kz


[
0 0 0

]
1


 R

00
0


[
0 0 0

]
1

 =

 R

kxky
kz


[
0 0 0

]
1



Rk,θDk =

 R

00
0


[
0 0 0

]
1


 I3×3

kxky
kz


[
0 0 0

]
1

 =

 R R

kxky
kz


[
0 0 0

]
1
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Now we only need to prove or disprove R

kxky
kz

 =

kxky
kz



R

kxky
kz

 =

 k2xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ
kxkyvθ + kzsθ k2yvθ + cθ kykzvθ − kxsθ
kxkzvθ − kysθ kykzvθ + kxsθ k2zvθ + cθ

kxky
kz


=

k2xkxvθ + kxcθ + k2ykxvθ − kykzsθ + k2zkxvθ + kykzsθ
k2xkyvθ + kxkzsθ + k2ykyvθ + kycθ + k2zkyvθ − kxkysθ
k2xkzvθ − kxkysθ + k2ykzvθ + kxkysθ + k2zkzvθ + kzcθ


=

(k2x + k2y + k2z)kxvθ + kxcθ
(k2x + k2y + k2z)kyvθ + kycθ
(k2x + k2y + k2z)kzvθ + kzcθ


=

kx(1− cθ) + kxcθ
ky(1− cθ) + kycθ
kz(1− cθ) + kzcθ


=

kxky
kz


5. Consider the figure shown below.

(a) Suppose that we want to command the robot to align the part that it is holding (having coordinate
frame {T}) with a slot (having coordinate frame {G}. Assume that the following transforma-
tions are known: TBW , TWT , TBS , and TSG . Find an expression for T TG (the pose of {G} expressed
in {T}) in terms of the known transformations.

T TG = (TWT )−1(TBW )−1TBS T
S
G

(b) If you used your answer to part (a) to move the robot, the robot would try to move so that frame
{T} was aligned with frame {G} which doesn’t work because the direction of the slot is yG
whereas the corresponding direction on the part is xT . Suppose that we want the part aligned
with the slot so that the origin of {T} is coincident with the origin of {G}, xT is parallel to
yG, and yT is parallel with xG. What transformation should you postmultiply T TG to obtain the
desired alignment?

6



0 1 0
1 0 0
0 0 −1


(c) Suppose that the robot has picked up a part (having coordinate frame {T}) but it does not know

the pose of the part relative to the wrist (having coordinate frame {W}). One way to find TWT
(the pose of the part relative to wrist) is to have the robot align the part so that the part has a
known pose relative to the robot. This is known as the tool calibration problem. In the above
figure, the calibration jig having coordinate frame {S} has an accurately machined slot having
coordinate frame {G}. When the part is aligned with the calibration slot, the origin of {T} is
coincident with the origin of {G}, xT is parallel to yG, and yT is parallel with xG. Assume that
the transformations TBS and TSG are known and constant, and assume that the robot can measure
TBW when the arm is moved. Find an expression for the pose of {T} expressed in {W} in terms
of the known and measured transformations. Note that {G} and {T} are not identical when the
alignment is achieved; there is a transformation not shown on the diagram that you must account
for.

TWT = (TBW )−1TBS T
S
G

0 1 0
1 0 0
0 0 −1


6. Graduate students only

A quaternion is another representation of rotation in 3D. The quaternion Q = (qw, qx, qy, qz) can be
thought of as being a scalar qw and a vector ~q =

[
qx qy qz

]T . Given two quaternions A = (aw,~a)

and B = (bw,~b), the quaternion product C = AB is defined as

cw = awbw − ~a ·~b

~c = aw~b+ bw~a+ ~a×~b

where ~a×~b is the cross product of ~a and~b.

(a) Show that QIQ = QQI = Q for every unit quaternion Q where QI = (1, 0, 0, 0), i.e., QI is the
identity quaternion.

(b) The conjugate Q∗ of a quaternion Q = (qw, ~q) is given by Q∗ = (qw,−~q). Show that Q∗Q =
QQ∗ = (1, 0, 0, 0), i.e., Q∗ is the inverse of Q.

(c) The quaternion Q = (qw, ~q) where qw = cos θ2 and ~q =
[
kx sin

θ
2 ky sin

θ
2 kz sin

θ
2

]T
represents the rotation of angle θ about the unit vector k̂ =

[
kx ky kz

]T . A vector ~p =[
px py pz

]T can be rotated using the quaternion product QPQ∗ where P is the quaternion
(0, ~p). Show that this is true for a rotation of angle θ about the z-axis.

7. Graduate students only
Consider a vector v that is rotated about a unit vector k̂ (passing through the origin) by an angle θ to
form a new vector v′:

v′ = Rk,θv

Derive Rodrigues’ rotation formula,

v′ = v cos θ + (k̂ × v) sin θ + k̂(k̂ · v)(1− cos θ)
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Do not replicate the Wikipedia derivation; instead, use the rotation matrix for rotation about an axis k̂
by an angle θ (Slide 67 of the first set of lecture slides).
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