EECS4221/5324: Lab 1 Written Questions

Posted: Sun Jan 14, 2018
Due: in class Wed Jan 25, 2018

1. Find the 4 x 4 homogeneous transformation matrix (showing the numeric values for all 16 elements)
TY where:

(a) {1} has the same orientation as {0} and the origin of {1} is translated relative to the origin of
{0}byd? =[5 —5 10] .

1 0 0 5
010 =5
0 _
=100 1 10 W
0 00 1
(b) The origin of {1} is coincident with the origin of {0}, and 2{ = —23, 9 = —29, and 29 = 9.
0 -1 0 0
0O 0 10
0 _
=14 90 00 @
0 0 01
(¢c) The origin of {1} is translated relative to the origin of {0} by d} = [0 0 —10]T, and the
orientation of {1} relative to {0} is the same as in part (b).
0 -1 0 O
0O 0 1 0
0 _
= -1 0 0 -10 3)
0 0 O

(d) The origin of {0} is translated relative to the origin of {1} by dj = [0 0 —IO]T, and the
orientation of {1} relative to {0} is

Show how you derived the solution for part (d).

You are given RY and d}, which allows you to compute 7}



po | @ d

0 0 0 1
Finding (7))~ (perhaps using Matlab) yields 77:

0.9971 —0.0292 0.0705 0.0705
—-0.0292 0.7083 0.7053 7.053
—0.0705 —0.7053 0.7053 7.053

0 0 0 1

T = (4)

2. Find the missing elements of the following rotation matrices. Show your work, or explain your rea-
soning. It may be the case that there is no unique solution, in which case you should find all possible
solutions. Hint: Consider using the cross product.

-1 0
@ (- 0 O
-0 —1
The columns of the rotation matrix are 29, ¢, and 29. ¥ is equal to the cross product of » and
29
0
o=y x4 = |1 )
0
V3/2 0
(b) : 0 1
Vv3/2 - 0

The magnitude of each column of the rotation matrix is equal to 1. Therefore, the missing
element 739 of the second column can be found as:

(V3/2)2 + 0% + 13, =12 = r3p = £1/2

The first column can then be found using the cross product; if 3o = 1/2 then:

F_1/2]
xlzy?xz?: 0
[V3/2]
If rgo = —1/2 then:
F 12 ]
xlzy?xz?: 0
[V3/2]
0 0 1
(c) 0
0



Let the missing elements of the matrix be:

0 01
a b 0
c d 0
Using the cross product we have:
ad — bc 1
29 x 9 = 0 =20=10
0 0
Thus:
ad—bc=1

The squared magnitude of the first column of the rotation matrix is:
a?+ct =1
From the previous two equations we can conclude that:
d=aand b= —c

and the rotation matrix is:

0O 0 1
a —c O
c a 0

2

Using the trigonometric identity cos? o + sin? & = 1 we can always express the rotation matrix as:

0 0 1
cosa —sina 0
sinaw cosa O

for some angle «; however, « is not equal to the angle of the rotation.

But could we not choose @ = sin ¥ and ¢ = cos y for some value y? Well, yes, but:

0 0 1 0 0 1
siny —cosy 0| = |cos(90 —~) —sin(90—+) 0
cosy siny 0 sin(90 —y) cos(90—~) O

so substituting o = 90 — ~y yields
0 0 1
cosa —sina 0
sina  cosa O

Using various trigonometric identities, you can verify that all 8 possible choices of a and c yield

rotation matrices that can be expressed as

0 0 1
cosa —sina 0
sinae cosa O

for some value «v. The 8 choices of ¢ and c are:



a c
cos 7y sin 7y
cosy | —sinvy

—cosy | sinvy
—cosy | —sinvy
sin vy cos 7y

siny | —cosvy
—siny | cos7y
—siny | —cos7y

3. Consider the following 4 x 4 homogeneous transformation matrices:

R, , : rotation about x by an angle a
R, , : rotation about y by an angle a
R, , : rotation about z by an angle a

z,a - translation along x by a distance a

5

D
D, , : translation along y by a distance a

5

y?
D, , : translation along z by a distance a

)

Write the matrix product giving the overall transformation for the following sequences (do not perform
the actual matrix multiplications):
(a) The following rotations all occur in the moving frame.

i. Rotate about the current z-axis by angle ¢.
ii. Rotate about the current y-axis by angle 6.
iii. Rotate about the current z-axis by angle .

Note: This yields the ZY Z-Euler angle rotation matrix.
Re g Ry ol

(b) The following rotations all occur in a fixed (world) frame.

i. Rotate about the world x-axis by angle .
ii. Rotate about the world y-axis by angle 6.
iii. Rotate about the world z-axis by angle ¢.

Note: This yields the roll, pitch, yaw (RPY) rotation matrix.
R By 0ltey

(c) The following transformations all occur in the moving frame.

i. Rotate about the current z-axis by angle 6;.

ii. Translate along the current z-axis by a distance d;.
iii. Translate along the current xz-axis by a distance a;.
iv. Rotate about the current z-axis by angle «;.



Note: This is the Denavit-Hartenberg transformation matrix.
Rzﬁi Dz,di D:):,ai Rx,ai

(d) The following transformations occur in a fixed (world) frame and in a moving frame.

i. Rotate about the world x-axis by angle ¢.
ii. Rotate about the world z-axis by angle 6.
iii. Rotate about the current z-axis by angle .
iv. Rotate about the world z-axis by angle a.

Rz a((RzpRe.g) R y)
Note: The parentheses are not necessary and are shown to indicate the order in which the rota-
tions occur.

4. Prove or disprove the following statement:
DRy = Ry 9Dy,

where Ry, g is the homogeneous form of the rotation matrix shown on Slide 67 of the first set of lecture
slides, and Dy, is the translation matrix:

1 0 0 k,
001 0 Ky
Dr=10 0 1 k,
00 0 1
Notethatk§+k§+k§:1.
Partition the matrices into blocks like so:
_ I3x3 ky R o] R ky,
DRy g = k. ol | = k.
[O 0 0] 1 [O 0 0] 1 [0 0 O] 1
0 ks ks
_ R 0 Isxs ky| | R R |k,
Ry gDy = 0 k|l = k.
0 0 0] 1 0 0 0 1 0 0 0] 1



ks Ky
Now we only need to prove or disprove R |k, | = |k,
k. k.

ke [ k‘gvg + cp k‘xk‘yvg — kysg kpk,vg + k‘ySQ ks

y = |kgkyve + k.39 k;vg + cq kyk.veg — kzsg| | Ky
| kakovg — kyse  kyk.ve + kysg k2vg + co k.
[k2kpvg + kyco + k;kxvg — kykzsg + k2kyve + kyk.se
= k‘g/{?yvg + kok.sg + kgkyvg + k‘yCQ + k‘zk‘yvg — k:xk‘ySQ
_kgk’zv(g — k‘mk‘ySQ + k’gkzvg + kmk‘ySQ + kzk‘zvg + k.co
[(k3 + Ky + k2)kvg + ki
= | (k2 + k; + k2)kyvg + kyco
(k2 + k4 kD) kv + k.co

ool
N

_kz(l - Ce) + kg:Cg
= ky(1 —cp) + kyco
_kz(l - 09) + k‘zC@
_km
_ k]
_kz

{B}

'/{S}

(a) Suppose that we want to command the robot to align the part that it is holding (having coordinate
frame {7'}) with a slot (having coordinate frame {G}. Assume that the following transforma-
tions are known: TMB;, T:‘F/V , T 5’? , and Tg . Find an expression for 7| g (the pose of {G'} expressed
in {T'}) in terms of the known transformations.

TG = (Ty) N(Tw) ' IS
(b) If you used your answer to part (a) to move the robot, the robot would try to move so that frame
{T'} was aligned with frame {G'} which doesn’t work because the direction of the slot is yg
whereas the corresponding direction on the part is 7. Suppose that we want the part aligned
with the slot so that the origin of {T'} is coincident with the origin of {G}, x is parallel to
ya, and yr is parallel with x5. What transformation should you postmultiply Tg to obtain the
desired alignment?



0
0

0
1
0 -1

S O =

(c) Suppose that the robot has picked up a part (having coordinate frame {7'}) but it does not know
the pose of the part relative to the wrist (having coordinate frame {W}). One way to find 7. %V
(the pose of the part relative to wrist) is to have the robot align the part so that the part has a
known pose relative to the robot. This is known as the tool calibration problem. In the above
figure, the calibration jig having coordinate frame {S} has an accurately machined slot having
coordinate frame {G}. When the part is aligned with the calibration slot, the origin of {T'} is
coincident with the origin of {G}, z7 is parallel to yq, and yp is parallel with z¢. Assume that
the transformations TS? and Tg are known and constant, and assume that the robot can measure
T when the arm is moved. Find an expression for the pose of {T'} expressed in {W} in terms
of the known and measured transformations. Note that {G} and {T'} are not identical when the
alignment is achieved; there is a transformation not shown on the diagram that you must account
for.

0 0
W = (T T8Ts |1 0
0

S O =

-1
6. Graduate students only

A quaternion is another representation of rotation in 3D. The quaternion @ = (qw, ¢z, gy, ¢-) can be
thought of as being a scalar ¢,, and a vector ¢ = [qw qy qz} T Given two quaternions A = (ay,, @)

—.

and B = (by, b), the quaternion product C' = AB is defined as

C

Awby — a
b+ bypd +d x b

+ =

w
¢

where @ x b is the cross product of @ and b.

(a) Show that Q;Q = QQr = @ for every unit quaternion () where Q7 = (1,0,0,0), i.e., Q7 is the
identity quaternion.

(b) The conjugate Q* of a quaternion Q) = (qu, ¢) is given by Q* = (qu, —¢). Show that Q*Q =
QQ* = (1,0,0,0), i.e., @* is the inverse of Q.

. - . . . o1T
(c) The quaternion Q = (qu,q) Where g, = cosg and ¢ = [kx smg ky ;m% k, sin g]
represents the rotation of angle 6 about the unit vector k& = [kx ky k:z] . A vector p =

[ e Dy pZ]T can be rotated using the quaternion product Q PQ* where P is the quaternion
(0, p). Show that this is true for a rotation of angle ¢ about the z-axis.
7. Graduate students only

Consider a vector v that is rotated about a unit vector & (passing through the origin) by an angle 6 to
form a new vector v':
v = Ry gv

Derive Rodrigues’ rotation formula,

v =wvcos+ (k x v)sind + k(k - v)(1 — cos )



Do not replicate the Wikipedia derivation; instead, use the rotation matrix for rotation about an axis k
by an angle ¢ (Slide 67 of the first set of lecture slides).



