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Socket programming

Goal: learn how to build client/server application that

communicate using sockets

Socket API

iIntroduced in BSD4 .1
UNIX, 1981

explicitly created, used,
released by apps

client/server paradigm

two types of transport
service via socket API:

= unreliable datagram

" reliable, byte stream-
oriented

a host-local,
application-created,
OS-controlled interface
(a “door") into which
application process can
both send and
receive messages to/from
another application
process



Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)
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Socket programming with TCP

Client must contact server

server process must first be
running

server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:

creating client-local TCP
socket

specifying IP address, port
number of server process
When client creates socket:

client TCP establishes
connection to server TCP

When contacted by client,
server TCP creates new
socket for server process to
communicate with client

= allows server to talk with
multiple clients

= source port numbers used
to distinguish clients

application viewpoint

TCP provides reliable, in-order
transfer of bytes ("pipe”)
between client and server



Stream jargon

= A stream is a sequence of characters that flow into or
out of a process.

= An input stream is attached to some input source for
the process, eg, keyboard or socket.

= An output stream is attached to an output source, eqg,
monitor or socket.



Socket programming with TCP

Example client-server app:

1) client reads line from i T
standard input (inFromUser _
stream) , sends to server via / input
socket (outToServer
stream)

2) server reads line from socket

3) server converts line to
uppercase, sends back to
client

4) client reads, prints modified
line from socket B clicnt TCP
(inFromServer stream) socket

keyboard monitor

inFromUser

inFromServer

fo network  from'network



Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =
ServerSocket()

TCP

wait for iNCOMING <= = mm e e e . CTEQLE SOCKEL,
connection request connection setup  connect to hostid, port=x

connectionSocket = C”entSéJCkEt =
welcomeSocket.accept() ocket()

send request using
read request from / clientSocket
connectionSocket
write reply to

connectionSocket \ read reply from

clientSocket
close

connectionSocket close
clientSocket



Create
input stream

Create
client socket,
connect to server

Create
output stream
attached to socket

Example: Java client (TCP)

import java.io.*;
import java.net.”;
class TCPClient {

public static void main(String argv[]) throws Exception

{

String sentence,;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());



Example: Java client (TCP), cont.

Create
input stream
attached to socket

Send line
to server

Read line
from server

BufferedReader inFromServer =

new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();
outToServer.writeBytes(sentence + '\n');
modifiedSentence = inFromServer.readLine();
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();



Create

welcoming socket
at port 6789

Wait, on welcoming
socket for contact
by client

Create input
stream, attached
to socket

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {
public static void main(String argv[]) throws Exception

{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);
while(true) {
Socket connectionSocket = welcomeSocket.accept();
BufferedReader inFromClient =

new BufferedReader(new
InputStreamReader(connectionSocket.getinputStream()));



Example: Java server (TCP), cont

Create output
stream, attached

DataOutputStream outToClient =
to socket

new DataOutputStream(connectionSocket.getOutputStream());

Read in line

from socket clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + \n’;

Write out line
to socket )

}
} End of while loop,
loop back and wait for
another client connection

outToClient.writeBytes(capitalizedSentence);



