Client Server Socket

Source Machine Destination Machine

192.168.1.2: 1200 i [google.com:80

‘\'—l

IP Address + Port (ephermal) IP Address + port (well known)

Socket Programming

EECS3214
Winter 2018

Socket programming

Goal: learn how to build client/server application that

communicate using sockets

Socket API

iIntroduced in BSD4 .1
UNIX, 1981

explicitly created, used,
released by apps

client/server paradigm

two types of transport
service via socket API:

= unreliable datagram

" reliable, byte stream-
oriented

a host-local,
application-created,
OS-controlled interface
(a “door") into which
application process can
both send and
receive messages to/from
another application
process

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of

to another

controlled by,
application
developer?

controlled by
operating

b

<

>

system

A

process

TCP with
buffers,

variables

host or
server

a

infernet

from one process

process

TCP with
buffers,
variables

host or
server

controlled by
application
developer

controlled by
operating
system

Socket programming with TCP

Client must contact server

server process must first be
running

server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:

creating client-local TCP
socket

specifying IP address, port
number of server process
When client creates socket:

client TCP establishes
connection to server TCP

When contacted by client,
server TCP creates new
socket for server process to
communicate with client

= allows server to talk with
multiple clients

= source port numbers used
to distinguish clients

application viewpoint

TCP provides reliable, in-order
transfer of bytes ("pipe”)
between client and server

Stream jargon

= A stream is a sequence of characters that flow into or
out of a process.

= An input stream is attached to some input source for
the process, eg, keyboard or socket.

= An output stream is attached to an output source, eqg,
monitor or socket.

Socket programming with TCP

Example client-server app:

1) client reads line from i T
standard input (inFromUser _
stream) , sends to server via / input
socket (outToServer
stream)

2) server reads line from socket

3) server converts line to
uppercase, sends back to
client

4) client reads, prints modified
line from socket B clicnt TCP
(inFromServer stream) socket

keyboard monitor

inFromUser

inFromServer

fo network from'network

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =
ServerSocket()

TCP

wait for iNCOMING <= = mm e e e . CTEQLE SOCKEL,
connection request connection setup connect to hostid, port=x

connectionSocket = C”entSéJCkEt =
welcomeSocket.accept() ocket()

send request using
read request from / clientSocket
connectionSocket
write reply to

connectionSocket \ read reply from

clientSocket
close

connectionSocket close
clientSocket

Create
input stream

Create
client socket,
connect to server

Create
output stream
attached to socket

Example: Java client (TCP)

import java.io.*;
import java.net.”;
class TCPClient {

public static void main(String argv[]) throws Exception

{

String sentence,;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Example: Java client (TCP), cont.

Create
input stream
attached to socket

Send line
to server

Read line
from server

BufferedReader inFromServer =

new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();
outToServer.writeBytes(sentence + '\n');
modifiedSentence = inFromServer.readLine();
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

Create

welcoming socket
at port 6789

Wait, on welcoming
socket for contact
by client

Create input
stream, attached
to socket

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {
public static void main(String argv[]) throws Exception

{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);
while(true) {
Socket connectionSocket = welcomeSocket.accept();
BufferedReader inFromClient =

new BufferedReader(new
InputStreamReader(connectionSocket.getinputStream()));

Example: Java server (TCP), cont

Create output
stream, attached

DataOutputStream outToClient =
to socket

new DataOutputStream(connectionSocket.getOutputStream());

Read in line

from socket clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + \n’;

Write out line
to socket)

}
} End of while loop,
loop back and wait for
another client connection

outToClient.writeBytes(capitalizedSentence);

