Wireless and Mobile Networks

EECS3214

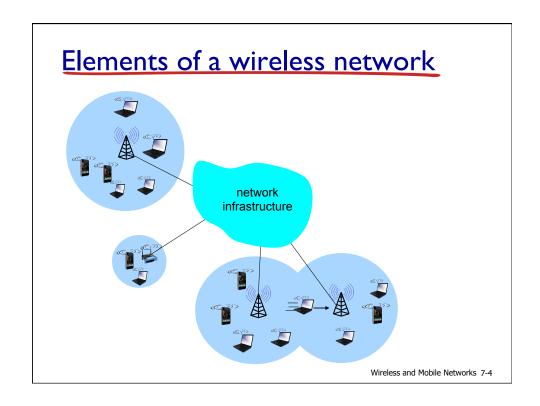
2018-03-26

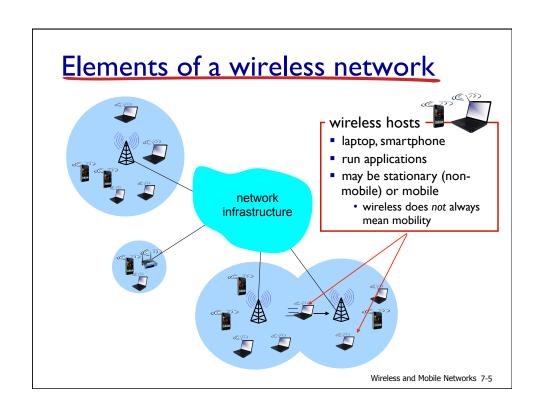
© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

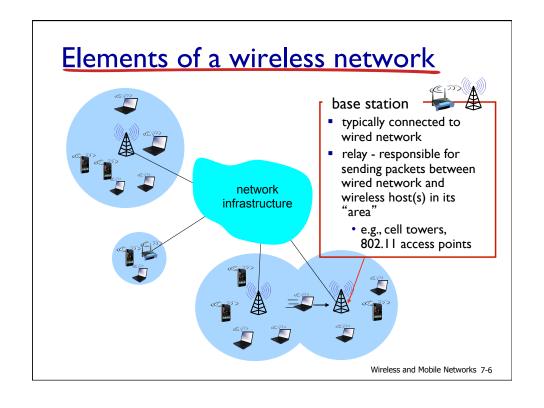
7_1

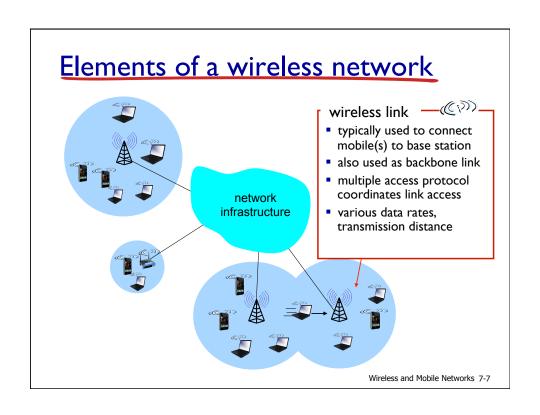
Ch. 6: Wireless and Mobile Networks

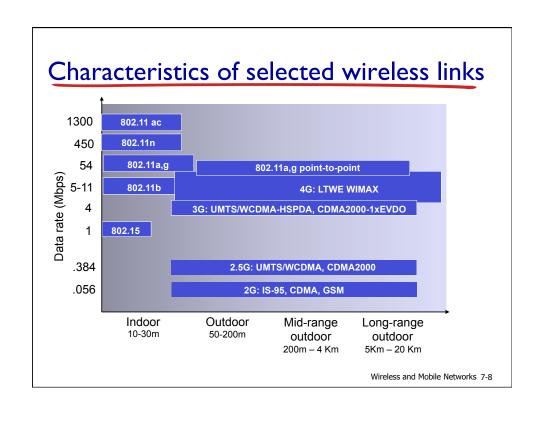
Background:

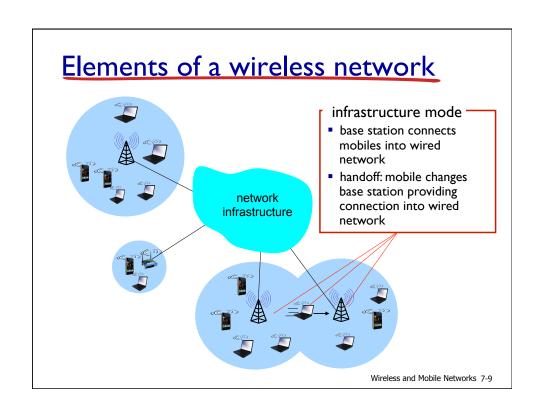

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

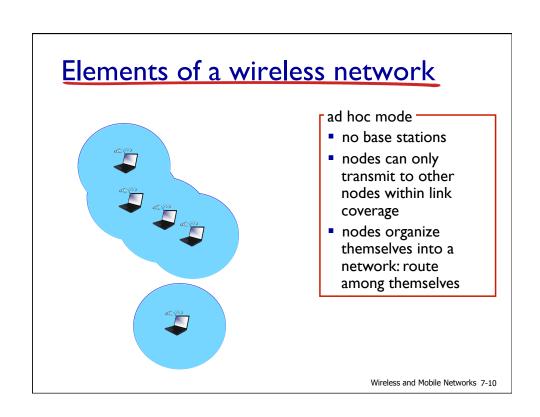

Chapter 7 outline


7.1 Introduction


Wireless


- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)





Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g.,APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET,VANET

Wireless and Mobile Networks 7-11

Chapter 7 outline

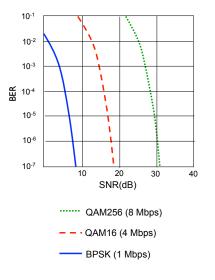
7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

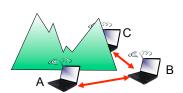
Wireless Link Characteristics (1)

important differences from wired link

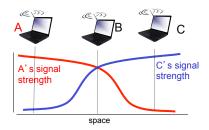

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless and Mobile Networks 7-13


Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)


Wireless network characteristics (3)

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B,A hear each other
- B. C hear each other
- A, C cannot hear each other means A, C unaware of their interference at B

Also due to signal attenuation:

- B,A hear each other
- B, C hear each other
- A, C cannot hear each other interfering at B

Wireless and Mobile Networks 7-15

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.1 lg

- 2.4-5 GHz range
- up to 54 Mbps

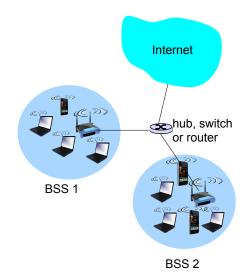
802. I In: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

Wireless and Mobile Networks 7-17

IEEE 802.11 Physical Layer

	802.11	802.11a	802.11b	802.11g		
Available bandwidth	83.5 MHz	300 MHz	83.5 MHz	83.5 MHz		
Unlicensed frequency of operation	2.4 - 2.4835 GHz DSSS, FHSS	5.15 - 5.35 GHz OFDM 5.725 - 5.825 GHz OFDM	2.4 - 2.4835 GHz DSSS	2.4 - 2.4835 GHz DSSS, OFDM		
Number of non- overlapping channels	3 (indoor/outdoor)	4 indoor 4 (indoor/outdoor) 4 outdoor	3 (indoor/outdoor)	3 (indoor/outdoor)		
Data rate per channel	1, 2 Mbps	6, 9, 12, 18, 24, 36, 48, 54 Mbps	1, 2, 5.5, 11 Mbps	1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps		
Compatibility	802.11	Wi-Fi5	Wi-Fi	Wi-Fi at 11 Mbps and below		

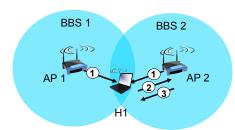

18

IEEE 802.11n

- IEEE 802.11n has enhancements in 3 general areas:
 - multiple-input-multiple-output (MIMO) antenna architecture
 - most important enhancement
 - radio transmission scheme
 - increased capacity
 - MAC enhancements
 - most significant change is to aggregate multiple MAC frames into a single block for transmission

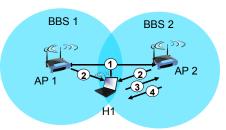
19

802.11 LAN architecture


- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (a.k.a. "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

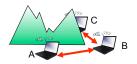
- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

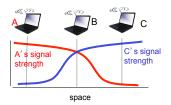

Wireless and Mobile Networks 7-21

802.11: passive/active scanning

passive scanning:

- (I) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to HI



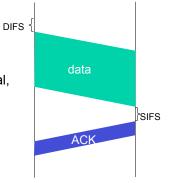

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2 or more nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - · don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

sender


Wireless and Mobile Networks 7-23

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

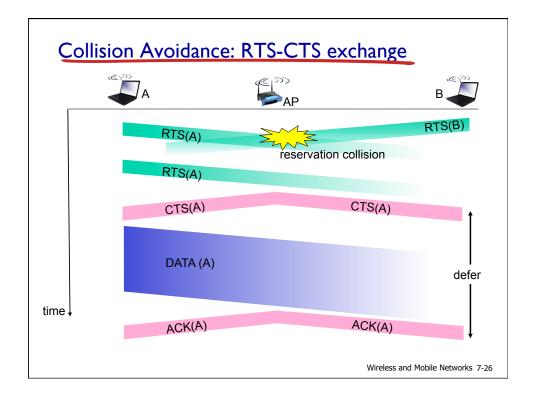
- 1 if sense channel idle for **DIFS** then transmit entire frame (no CD)
- 2 if sense channel busy then

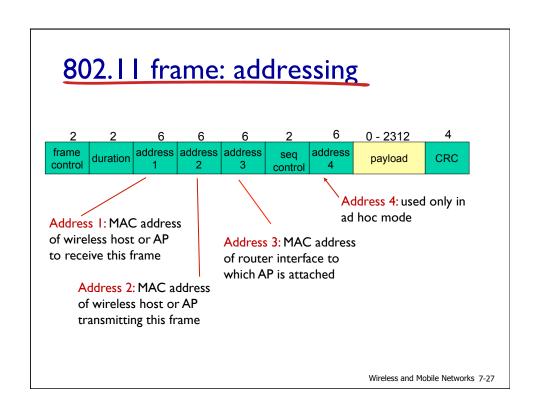
start random backoff time
timer counts down while channel idle
transmit when timer expires
if no ACK, increase random backoff interval,
repeat 2

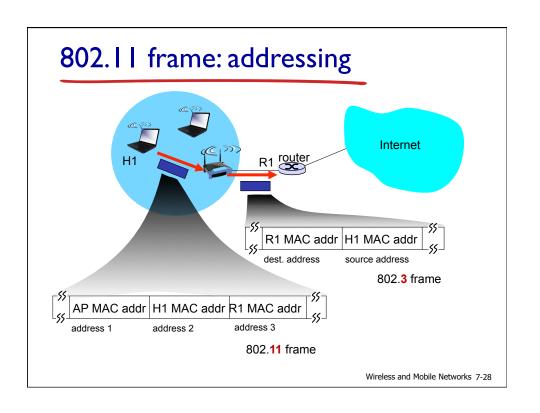
receiver

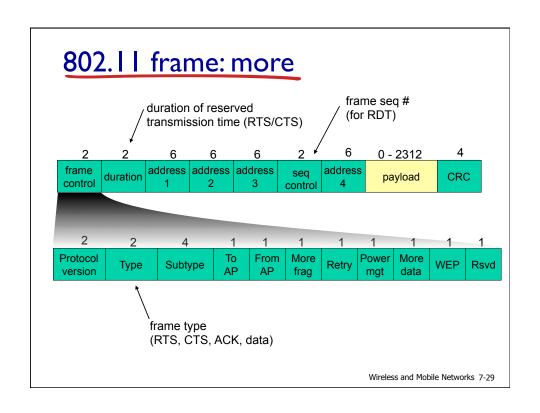
802.11 receiver

- if frame received OK

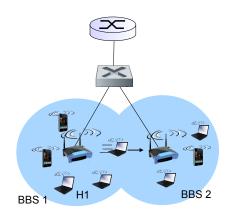

return ACK after **SIFS** (ACK needed due to hidden terminal problem)


Avoiding collisions (more)


idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

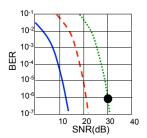

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - · sender transmits data frame
 - · other stations defer transmissions

avoid data frame collisions completely using small reservation packets!



802. II: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with HI?
 - self-learning (Ch. 5): switch will see frame from HI and "remember" which switch port can be used to reach HI



802. II: advanced capabilities

Rate adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

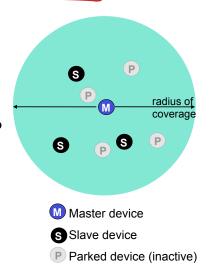
Wireless and Mobile Networks 7-31

Data Rate (Mbps) vs. Distance (m)

Data Rate (Mbps)	802.11b	802.11a	802.11g
1	90+	ı	90+
2	75	_	75
5.5(b)/6(a/g)	60	60+	65
9	_	50	55
11(b)/12(a/g)	50	45	50
18	_	40	50
24	_	30	45
36	_	25	35
48	-	15	25
54	-	10	20
			32

16

802. I I: advanced capabilities


power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - · AP knows not to transmit frames to this node
 - · node wakes up before next beacon frame
- beacon frame: contains list of mobiles with APto-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

Wireless and Mobile Networks 7-33

IEEE 802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - · master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet access
 - architecture
 - standards (e.g., 3G, LTE)