Transmission Control Protocol
(TCP)

EECS 3214

5 February 2018

TCP Services

* Transmission Control Protocol (RFC 793)
— connection oriented, reliable communication
— over reliable and unreliable (inter)networks

* |f the underlying network is unreliable (IP)
= segments may get lost
= segments may arrive out of order

* Connection establishment and termination
* Flow control

* Reliable delivery

* Congestion control

18-02-05

TCP Header

Destination Port

E Sequence Number
g Acknowledgment Number
Data clefulalp|r]|s|F)
wlc R|C|S s|y|x Windo
offset RmedREGKHTNN w
Checksum Urgent Pointer
Options + Padding

Issues to Consider

* ordered delivery

* flow control

* connection establishment
* connection termination

* retransmission strategy

* duplication detection
 failure recovery

18-02-05

Ordered Delivery

segments may arrive out of order.
hence we number segments sequentially.
TCP numbers each octet sequentially.

each segment is numbered by the first octet
number in the segment.

TCP Flow Control

uses a credit scheme
each octet has a sequence number
each transport segment has in header

— sequence number (SN)

— ACK number (AN)

— window size (W)

sends sequence number of first octet in segment
ACK includes (AN=i, W=j) which means

— all octets through SN=i-1 acknowledged, want i next
— permission to send additional window of W=j octets

18-02-05

Credit Allocation

Transport Entity A

...1000 J1001 2400 2401...

A may send 1400 octets

| ——
..1000 1001 |1601 | 2401...
| SN

I
A shrinks its transmit window with each
transmission

| m—
2001 |2401...
—

1000 |1001

1 ——
...1600 [1601 lgl | 2601...

A adjusts its window with each credit

...1600 ilﬁ)l Iﬂl 2601...

A exhausts its credit

2601 4000| 4001...

A receives new credit

Transport Entity B

...1000 J1001 2400| 2401...

B is prepared to receive 1400 octets,
beginning with 1001

—

...1600 |mn | 2601...

B acknowledges 3 segments (600 octets), but is only
prepared to receive 200 additional octets beyond the
original budget (i.e., B will accept octets 1601
through 2600)

l [—

M.lsoollm 2001 | 2601...

2600 |2601 4000/ 4001...

B acknowledges 5 segments (1000 octets) and
restores the original amount of credit

Sending and Receiving Perspectives

Octets not yet
ack B
Data octets 50 far — Window of octets
Data octets already that may be
| LR
X p.] bl
— ——
Initial Sequence Last octet Lastoctet Window shrinks from Window expands
Number (ISN) acknowledged transmitted trailing edge as from leading edge
(AN-1) segments are sent as credits are received
(a) Send sequence space
Octets not yet
Data octets so far ac! dge R

Data octets already received

Window of octets

that may be accepted

LN]
x b.] 2
R R —
Initial Sequence Last octet Lastoctet Window shrinks from Window expands
Number (ISN) acknowledged received trailing edge as from leading edge
(AN-1) segments are received as credits are sent

(b) Receive sequence space

18-02-05

Issues to Consider

connection establishment
connection termination
retransmission strategy
duplication detection
failure recovery

Connection Establishment and
Termination

required by connection-oriented transport
protocols like TCP

need connection establishment and
termination procedures to

— allow each end to know the other exists

— allow negotiation of optional parameters

— trigger allocation of transport entity resources

10

18-02-05

TCP Connection Establishment

three way handshake
— SYN, SYN-ACK, ACK

connection determined by source and
destination sockets

can only have a single connection between
any unique pairs of ports

but one port can connect to multiple ports

A B

&‘ A initiates a connection
‘W B accepts and acknowledges

s

Sk Laye,
=j+1
\ A acknowledges and begins transmission

(a) Normal operation

Obsolete SYN arrives
W a y UNj,AN= ivl B accepts and acknowledges

Handshake: ™ Ao
Examples

Shy,

(b) Delayed SYN

A initiates a connection
Old SYN arrives at A; A rejects

B accepts and acknowledges

A ges and begins tr:

(c) Delayed SYN, ACK

12

18-02-05

Active Open or Unspecified Passive Open or
Active Open with Data Fully Specified Passive Open
Initialize SV; Send SYN

SED

Send SYN,

Receive
ACK of SYN

TCP Three
Way

Send ACK

Receive SYN

—_— —
(m SENT ool (RECEIVED
CK . Send SYN,ACK

Receive FIN

Initialize SV

Receive SYN, ACK . Receive FIN, ACK of SYN

Send ACK

Handshake: & o

Diagram @& | @~

Receive FIN, ACK Receive
Send ACK ACK of FIN
Receive FIN
Send ACK WAIT

SV = state vector

‘\
Send ACK
WAIT
State Tl e
ACK of FIN 5 Send FIN

Receive
ACK of SYN

—_—
Timeout (IQSED
(2MSL)

MSL = maximum segment lifetime 13
Issues to Consider
* connection termination
* retransmission strategy
* duplication detection
* failure recovery
14

18-02-05

Connection Termination

* also needs 3-way handshake

* misordered segments could cause the following:

— entity in CLOSE WAIT state sends the last data segment,
followed by a FIN

— but the FIN arrives before the last data segment
— receiver accepts FIN, closes connection, loses data
* need to associate sequence number with FIN

* receiver waits for all segments before FIN sequence
number

Connection Termination:
Graceful Close

* also have problems with loss of segments and
obsolete segments

* need graceful close which will:
—send FIN i and receive AN i+1
— receive FIN j and send AN j+1

— wait twice maximum expected segment lifetime
before “closed”.

16

18-02-05

18-02-05

Issues to Consider

* retransmission strategy
* duplication detection
 failure recovery

Retransmission Strategy

* retransmission of segments needed because
— segments may be damaged in transit
— segments fail to arrive

transmitter does not know of failure

* receiver must acknowledge successful receipt
— can use cumulative acknowledgement for efficiency

If a segment does not arrive successfully, no ACK will
be issued =» retransmission.

There is a timer associated with each segment sent.
* Timer expires before ACK arrives =» retransmit.

18

Accept Policy

* segments may arrive out of order
* accept in order

— only accept segments in order

— discard out of order segments

— simple implementation, but burdens network
* accept in window

— accept all segments within receive window

— reduce transmissions

— more complex implementation with buffering

Retransmit Policy

* TCP sender has a queue of segments transmitted but
not acknowledged

* Sender will retransmit if it does not receive an ACK
within a given time
— first only - single timer, send the front segment when timer
expires; efficient for traffic, considerable delays

— batch - single timer, send all segments when timer expires;
has unnecessary retransmissions

— individual - timer for each segment; lower delay, more
efficient for traffic, but complex

20

18-02-05

10

Retransmit Policy (2)

« effectiveness depends in part on receiver’ s
accept policy
— accept in order: batch
— accept in window: first-only or individual

21

Acknowledgement Policy

* immediate

— send empty ACK (no data) for each accepted segment
— simple, at cost of extra transmissions

e cumulative

— piggyback ACK on suitable outbound data segments unless
persist timer expires

— if persist timer expires, send empty ACK

— typically used in practice

— more complex (processing, estimating RTT)
— but fewer transmissions

22

18-02-05

11

Issues to Consider

duplication detection
failure recovery

23

Duplication Detection

if an ACK is lost, the segment is duplicated and re-
transmitted

receiver must recognize duplicates

if duplicate received prior to closing connection

— receiver assumes previous ACK lost and sends a new ACK
for the duplicate

— sender must not get confused by multiple ACKs

— need a sequence number space large enough to not
recycle sequence numbers within the maximum lifetime of
a segment

24

18-02-05

12

Incorrect
Duplicate
Detection

Transport Transport
Entity A Entity B

A times out and
retransmits SN = 1

A times out and
retransmits SN = 201

Obsolete SN =1
arrives

25

Issues to Consider

failure recovery

26

18-02-05

13

Failure Recovery

* The still active side can close the connection using a
keep-alive timer.

— Timer expires: closes the connection, and signals an
abnormal close to the upper layer.

* The failed side restarts quickly:

— The failed side returns an RST i to every segment i that it
receives.

— The other side performs an abnormal termination.

27

TCP Congestion Control

28

18-02-05

14

18-02-05

TCP Congestion Control

* flow control also used for congestion control

— recognize increased transit times and dropped
packets

— react by reducing flow of data
 RFC 1122 and 2581 detail extensions

— Tahoe, Reno and New Reno implementations
* two categories of extensions:

— retransmission timer management

— window management

29

Retransmission Timer Management

* static timer likely too long or too short
* hence estimate round trip delay by observing pattern
of delay for recent segments
* set retransmission timer to a value a bit greater than
estimated RTT: RTO(k) = RTT(k) + A
* to estimate RTT:
— simple average over a number of segments
— exponential average using time series (RFC 793)
* assume no loss, the RTT of each segment is used in
the following calculations

30

15

Computing RTT

* Simple average

1 K+1
K+1)=——N RIT(i
r() KHZ (@)
1
K+1)= K)+ RIT(K +1
r() K+1r() K+1 ()

* Exponential average

r(K+l)=axr(K)+(1-a)xRTT(K +1)
0<a<l

31

a=05
a=0875

—O—— Simple average
—a—— Observed value

Observed or average value

Use of 3y
Exponential
Averaging :

2
]
g
@15
&
£
S
4
=
5
s 10
S
g
S
A (L 2 a=05
° s o O— a=0875
g —O—— Simple average
—&—— Observed value
B
1 2 3 4 5 6 7 8 9 1011 1213 1415 16 17 18 19 20

Time
(b) Decreasing function

18-02-05

16

Implementation of TCP Congestion Control Measures

Measure

RTT Variance Estimation
Exponential RTO Backoff
Karn’s Algorithm

Slow Start

Dynamic Window Sizing
on Congestion

Fast Retransmit
Fast Recovery
Modified Fast Recovery

RFC 1122

TCP Tahoe

TCP Reno

NewReno

33

RTT Variance Estimation

* Jacobson’s algorithm

* To “smooth out” high variance in RTTs caused by

— dynamic network traffic

— receiver using cumulative acknowledgements
* Then calculates RTT and RTO

34

18-02-05

17

18-02-05

Implementation of TCP Congestion Control Measures

Measure RFC 1122 TCP Tahoe TCP Reno NewReno
RTT Variance Estimation) v v v
Exponential RTO Backoff J Vv V v
Karn’s Algorithm Nl v Vv v
Slow Start J Y v v
Dynamic Window Sizing
on Congestion J v Vv v
Fast Retransmit Y Vv v
Fast Recovery v v
Modified Fast Recovery v

35

Why Karn’s Algorithm?

* Scenario: a segment C1 times out and is
retransmitted as C2.

* Sender receives an ACK: 2 possibilities
— casel: to acknowledge C1
— case 2: to acknowledge C2

* Sender cannot distinguish between the 2 cases.

* If case 2 is true, and RTT = t, — t, then RTT would
be too long.

* If case 1istrue, and RTT = t,, —t,, then RTT would
be too short.

36

18

Karn’s Algorithm

* Do not use the measured RTT of a retransmitted
segment to update r(K+1).

* Calculate the backoff RTO using binary exponential
backoff when a retransmission occurs.

* Use the backoff RTO value for succeeding segments
until an ACK arrives for a segment that has not been
retransmitted,

— at which point use Jacobson’s algorithm (averaging
formula) to compute new RTT and future RTO values.

Exponential RTO Backoff

* timeout probably due to congestion
— dropped packet or long round trip time

* hence maintaining same retransmission timeout (RTO) timer
is not good idea

* better to increase RTO each time a segment is
re-transmitted

— RTO=g xRTO
— commonly g = 2 (binary exponential backoff)
— as in Ethernet CSMA/CD

18-02-05

19

Implementation of TCP Congestion Control Measures

Measure

RTT Variance Estimation
Exponential RTO Backoff
Karn’s Algorithm

Slow Start

Dynamic Window Sizing
on Congestion

Fast Retransmit

Fast Recovery

Modified Fast Recovery

RFC 1122

TCP Tahoe

TCP Reno

NewReno

39

Window Management: Slow Start

* awnd = min(credit, cwnd)

* larger windows allow connections to send more data

* atstart, limit TCP to 1 segment: cwnd =1

* assume no loss, for every ACK, slide window forward
by 1 and also increase cwnd by 1, doubling window

size in the next “round”

* exponential growth during “slow start”

* when does “slow start” stop?

40

18-02-05

20

Dynamic Window Sizing on Congestion

* when a timeout occurs, assume congestion

* set slow start threshold to half current congestion
window: ssthresh =cwnd /2

* set window size to 1 and slow start until reaching
threshold

* beyond threshold, increase window size by 1 for
each RTT with no loss (congestion avoidance)

* Note: threshold can become quite small for successive packet
losses.

41

Window Management

20

cwnd

threshold

5 6 7 8 9 10 11 12 13 14 15 16
Round-trip times

42

18-02-05

21

Implementation of TCP Congestion Control Measures

Measure RFC 1122 TCP Tahoe TCP Reno NewReno
RTT Variance Estimation Y v v \
Exponential RTO Backoff J Vv V v
Karn’s Algorithm v v v v
Slow Start J Y v v
Dynamic Window Sizing
on Congestion J v Vv v
Fast Retransmit v v v
Fast Recovery v v
Modified Fast Recovery v

43

Fast Retransmit

* retransmit timer RTO rather longer than RTT
* if asegment is lost TCP slow to retransmit
— accept in order: many segments may be lost
— accept in window: first segment lost may cause buffer
overflow at receiver
 fast retransmit

— receiver: if receive a segment out of order, issue an ACK
for the last in-order segment correctly received. Repeat
this until the missing segment arrives.

— sender: if receive 4 ACKs for the same segment then
immediately retransmit (without waiting for timer to
expire), since it is likely to have been lost,

44

18-02-05

22

Fast Recovery

* Setting cwnd =1 upon a loss is unnecessarily
conservative (low throughput).

* Avoid slow start.

* Fast recovery:
— retransmit the lost segment
— cut cwnd in half

— then increase cwnd linearly

45

Window Management Examples

Linear increase

N Rcéulatf-TCP

(T.CP Tahoe) -

Congestion window size (MSS)

G
B Congestion detected A slow start threshold ime

46

18-02-05

23

When does “slow start” stop?

awnd = min(credit, cwnd)

* whenreaching credit

* when a time out occurs

* when reaching ssthresh (if one exists)
* when receiving triple duplicate ACKs

47

Transport Protocol Timers

Retransmission timer Retransmit an unacknowledged segment

2MSL (maximum segment Minimum time between closing one connection and
lifetime) timer opening another with the same destination address
Persist timer Maximum time between ACK/CREDIT segments
Retransmit-SYN timer Time between attempts to open a connection
Keepalive timer Abort connection when no segments are received

48

18-02-05

24

TCP Header

Bit: 0 4 8 16 31

Destination Port

Sequence Number

20 octets

Acknowledgment Number
Data C|E|U|A|P|R|S|F .
wlc R|C|S s|y|x Windo
offset RmedREGKHTNN w
Checksum Urgent Pointer
Options + Padding

49

Reading

* Chapter “Transport Protocols”, William
Stallings’ book

50

18-02-05

25

