Transport Layer

EECS 3214

Slides courtesy of J.F Kurose and K.W. Ross, All Rights Reserved

29-Jan-18
1-1

Chapter 3: Transport Layer

our goals:

» understand principles = |earn about Internet
behind transport transport layer protocols:
layer services: * UDP: connectionless

* multiplexing, transport
demultiplexing * TCP: connection-oriented
* reliable data transfer reliable transport
* flow control * TCP congestion control
* congestion control * TCP flow control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
° segment structure
* reliable data transfer
* flow control
* connection management
3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols

= provide logical communication
between application processes
running on different hosts

= transport protocols run in end
systems

* sending side: breaks
application messages into
segments, passes to
network layer

* receiving side: reassembles
segments into messages,
passes to application layer

* more than one transport
protocol available to
applications

* Internet: TCP and UDP

transport
?

Transport Layer 3-4

Transport vs. hetwork layer

= network layer: logical communication
between hosts (computers)

= transport layer: logical communication

between processes

* relies on, enhances, network layer services

Transport Layer 3-5

Internet transport-layer protocols

= reliable, in-order
delivery (TCP)
* congestion control
* flow control
* connection setup
= unreliable, unordered
delivery: UDP
* no-frills extension of
“best-effort” IP
= services not available:
* delay guarantees
* bandwidth guarantees

application
<

transport

|_netwiyg |
physicay

SN stz il
ik Xoyscal |

transport
data link
physical
=+

network
data link
physical

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and * segment structure
demultiplexing * reliable data transfer

3.3 connectionless * flow control
transport: UDP * connection management

3.4 principles of reliable 3.6 principles of congestion

data transfer control
3.7 TCP congestion control

Transport Layer 3-7

Terminology

Port: external end-point at a node
Socket: internal end-point of local inter-process
communication
In Internet protocols, socket address = IP address + port
number
Berkeley sockets: API for Internet sockets (Unix)

* socket represented as a file descriptor (socket descriptor)

* socket (): creates a new socket and gives it a socket
descriptor

* bind(): associates a socket descriptor with a socket
address

An Internet socket is characterized by at least

* socket address (IP address + port number)

* protocol (TCP, UDP)

e TCP port 1234 and UDP port 1234 are distinct sockets
Transport Layer 3-8

Multiplexing/demultiplexing

multiplexing at sender:

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

demultiplexing at receiver: ——
use header info to deliver
received segments to correct
socket

application
application
transport netwark
network "bk
link Ppy3ical
physical
e ||

application [._-] socket
Qprocess
trangport
net\ork
Iimk
physical
S

Transport Layer 3-9

How demultiplexing works

" host receives |P datagrams

* each datagram has source IP

address, destination IP
address

* each datagram carries one
transport-layer segment
* each segment has source,
destination port number
" host uses [P addresses and
port numbers to direct
segment to appropriate
socket

+«— 32 bits —

source port # dest port #

other header fields

application
data
(payload)

TCP/UDP segment format

Transport Layer 3-10

Connectionless demultiplexing

" recall: created socket has = recall: when creating
host-local port #: datagram to send into UDP

DatagramSocket mySocketl sockegrnustspecﬁy
= new DatagramSocket(12534)7 . (estination IP address

* destination port #

= when host receives UDP IP datagrams with same
segment: dest. port #, but different
o source |P addresses and/
. Fhecks destination port # ‘ or source port numbers
|n‘ segment will be directed to same
* directs UDP segment to socket at dest
socket with that port #

Transport Layer 3-11

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157); application (5775);
application application
:
trp rt
trangport nktwolk trangport
nefwork link netwprk
link phisichl li
g phydical phykical @
N)
- “+] g =
source port: 6428 source port: ?
dest port: 9157 dest port: ?
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-12

Connection-orie

nted demux

= TCP socket identified
by 4-tuple:
* source IP address
* source port number
* dest IP address
* dest port number

= demux: receiver uses all
four values to direct
segment to appropriate
socket

= server host may support
many simultaneous TCP
sockets:

* each socket identified by
its own 4-tuple

= web servers have
different sockets for
each connecting client

* non-persistent HTTP will
have different socket for
each request

Transport Layer 3-13

Connection-oriente

d demux: example

application

application application
rangport
tranpport J transport
netyork link network
lipk E bhysical link
g phyical server: [P physical
N address B L

host: IP source IP,port: B,80 host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C

source IP,port: A,9157
dest IP, port: B,80

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80_

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets

Transport Layer 3-14

Connection-oriented demux: example

threaded server

application
application application
pp P4 pp
rangport
tranpport etwlork transport
netyvork lidk network
lipk bhysical link
phyl;ical server: P physical
e — address B >
host: IP source IP,port: B,80 | <2 | host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
dest IP,port: B,80
source IP,port: A,9157
dest IP, port: B,80

source IP,port: C,9157
dest IP,port: B,80

Transport Layer 3-15

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

° segment structure
* reliable data transfer
* flow control
* connection management
3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-16

UDP: User Datagram Protocol [RFC 768]

* “no frills,” “bare bones” = UDP use:
Internet transport ® streaming multimedia
protocol apps (loss tolerant, rate
» “best effort” service, UDP sensitive)
segments may be: = DNS
* lost = SNMP
* delivered out-of-order * reliable transfer over
toapp UDP:

" connectionless:

* no handshaking
between UDP sender,
receiver

* each UDP segment
handled independently
of others

* add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-17

UDP: segment header

length, in bytes of

«——— 32 bits UDP segment,
source port # | d T # including header

length <~ | checksum

— why is there a UDP? —

" no connection

application establishment (which can
data add delay)
(payload) = simple: no connection

state at sender, receiver

= small header size (8 bytes)

" no congestion control:
UDP can blast away as fast
as desired

UDP segment format

Transport Layer 3-18

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

sender: receiver:

" treat segment contents, * compute checksum of
including header fields, received segment
as sequence of |6-bit » check if computed checksum
integers

equals checksum field value:

= checksum: addition « NO - error detected

(one’ s complement sum)

of segment contents * YES - no error detected.
» sender puts checksum But maybe errors

value into UDP checksum nonetheless? More later

field

Transport Layer 3-19

Internet checksum: example

example: add two | 6-bit integers

11100

0
11010 0

wr‘apar‘ound@lOlllOlllOl11011

sum 1011

1 10111100
checksum 01000

11
0001000O011

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

* Check out the online interactive exercises for more
examples: http:/gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-20

10

Chapter 3 outline

3.5 connection-oriented
transport: TCP
° segment structure
* reliable data transfer
* flow control
* connection management

3.4 principles of reliable 3.6 principles of congestion
data transfer control
(reading assignment) 3.7 TCP congestion control

Transport Layer 3-21

Chapter 3: summary

* principles behind transport
layer services:
* multiplexing,
demultiplexing

next:

= |eaving the network
edge (application,

* reliable data transfer transport layers)
* flow control * into the network
* congestion control “core”
" instantiation, = two network layer
implementation in the chapters:
Internet * data plane
- UDP ¢ control plane
- TCP

Transport Layer 3-22

11

