
1

Application Layer: HTTP

EECS 3214

1-1

Slides courtesy of J.F Kurose and K.W. Ross, All Rights Reserved

23-Jan-18

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

•  SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming

2

Application Layer 2-3

Chapter 2: application layer

our goals:
§  conceptual,

implementation aspects
of network application
protocols
•  transport-layer

service models
•  client-server

paradigm
•  peer-to-peer

paradigm
•  content distribution

networks

§  learn about protocols by
examining popular
application-level
protocols
•  HTTP
•  FTP
•  SMTP / POP3 / IMAP
•  DNS

§  creating network
applications
•  socket API

Application Layer 2-4

Some network apps

§  e-mail
§  web
§  text messaging
§  remote login
§  P2P file sharing
§  multi-user network

games
§  streaming stored

video (YouTube, Hulu,
Netflix)

§  voice over IP (e.g.,
Skype)

§  real-time video
conferencing

§  social networking
§  search
§  …
§  …

3

Application Layer 2-5

Creating a network app

write programs that:
§  run on (different) end systems
§  communicate over network
§  e.g., web server software

communicates with browser
software

no need to write software
for network-core devices

§  network-core devices do not
run user applications

§  applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application Layer 2-6

Application architectures (2.1.1)

possible structure of applications:
§  client-server
§  peer-to-peer (P2P)

4

Application Layer 2-7

Client-server architecture

server:
§  always-on host
§  permanent IP address
§  data centers for scaling

clients:
§  communicate with server
§  may be intermittently

connected
§  may have dynamic IP

addresses
§  do not communicate directly

with each other

client/server

Application Layer 2-8

P2P architecture
§  no always-on server
§  arbitrary end systems

directly communicate
§  peers request service from

other peers, provide service
in return to other peers
•  self scalability – new

peers bring new service
capacity, as well as new
service demands

§  peers are intermittently
connected and change IP
addresses
•  complex management

for security, reliability,
performance

peer-peer

5

Application Layer 2-9

Processes communicating (2.1.2)

process: program running
within a host

§  within same host, two
processes communicate
using inter-process
communication (defined by
OS)

§  processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

§  aside: applications with P2P
architectures have client
processes (initiating
communication) and server
processes

clients, servers

Application Layer 2-10

App-layer protocol defines (2.1.5)
§  types of messages

exchanged,
•  e.g., request, response

§  message syntax:
•  what fields in messages

& how fields are
delineated

§  message semantics
•  meaning of information

in fields
§  rules for when and how

processes send & respond
to messages

open protocols:
§  defined in RFCs
§  allows for interoperability
§  e.g., HTTP, SMTP
proprietary protocols:
§  e.g., Skype

6

Application Layer 2-11

What transport service does an app need? (2.1.3)

data integrity
§  some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

§  other apps (e.g., audio) can
tolerate some loss

timing
§  some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
§  some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

§ other apps (“elastic apps”)
make use of whatever
throughput they get

security
§ encryption, data integrity, …

Application Layer 2-12

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

7

Application Layer 2-13

Internet transport protocols services (21.4)

TCP service:
§  reliable transport between

sending and receiving process
§  flow control: sender won’t

overwhelm receiver
§  congestion control: throttle

sender when network
overloaded

§  does not provide: timing,
minimum throughput
guarantee, security

§  connection-oriented: setup
required between client and
server processes

UDP service:
§  unreliable data transfer

between sending and
receiving process

§  does not provide: reliability,
flow control, congestion
control, timing,
throughput guarantee,
security, or connection
setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-14

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP* or UDP

TCP* or UDP

SIP: session initiated protocol
RTP: real-time transport protocol
*TCP used as backup when UDP is blocked by firewalls

8

Securing TCP

TCP & UDP
§  no encryption
§  cleartext passwds sent into

socket traverse Internet in
cleartext

SSL
§  provides encrypted TCP

connection
§  data integrity
§  end-point authentication

SSL is at app layer
§  apps use SSL libraries,

which “talk” to TCP
SSL socket API
§  cleartext password sent

into SSL socket to be
encrypted

§  encrypted password sent
into TCP socket

§  see Chapter 8

Application Layer 2-15

Application Layer 2-16

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

•  SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming

9

Application Layer 2-17

Web and HTTP

First, a review…
§  web page consists of objects
§  object can be HTML file, JPEG image, Java applet,

audio file,…
§  web page consists of base HTML-file which

includes several referenced objects
§  each object is addressable by a URL, e.g.,
 www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-18

HTTP overview (2.2.1)

HTTP: hypertext
transfer protocol

§ Web’s application layer
protocol

§  client/server model
•  client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

•  server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP request HTTP response

HTTP request

HTTP response

10

Application Layer 2-19

HTTP overview (continued)

uses TCP:
§  client initiates TCP

connection (creates socket)
to server, port 80

§  server accepts TCP
connection from client

§ HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

§ TCP connection closed

HTTP is “stateless”
§  server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

§  past history (state) must be
maintained

§  if server/client crashes, their
views of “state” may be
inconsistent, must be reconciled

aside

Application Layer 2-20

HTTP connections (2.2.2)

non-persistent HTTP
§  at most one object

sent over TCP
connection
•  connection then

closed
§  downloading multiple

objects required
multiple connections

persistent HTTP
§  multiple objects can

be sent over single
TCP connection
between client, server

11

Application Layer 2-21

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object someDepartment/
home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer 2-22

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

12

Application Layer 2-23

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:
§  one RTT to initiate TCP

connection
§  one RTT for HTTP request

and first few bytes of HTTP
response to return

§  file transmission time
§  non-persistent HTTP

response time =
 2RTT+ file transmission

time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer 2-24

Persistent HTTP

non-persistent HTTP issues:
§  requires 2 RTTs per object
§ OS overhead for each TCP

connection
§  browsers often open

parallel TCP connections to
fetch referenced objects

Default is persistent HTTP.

persistent HTTP:
§  server leaves connection

open after sending
response

§  subsequent HTTP
messages between same
client/server sent over
open connection

§  client sends requests as
soon as it encounters a
referenced object

§  as little as one RTT for all
the referenced objects

§ TCP closes after a time-
out interval

13

Application Layer 2-25

HTTP request message (2.2.3)

§  two types of HTTP messages: request, response
§ HTTP request message:

•  ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

carriage return character
line-feed character

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer 2-26

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lf version URL

cr lf value header field name

cr lf value header field name

~ ~ ~ ~

cr lf

entity body ~ ~ ~ ~
(POST: data input into form fields)

14

Application Layer 2-27

Uploading form input

POST method:
§ web page often includes

form input (e.g., Google
searches)

§  input is uploaded to server
in entity body

URL method:
§  uses GET method
§  input is uploaded in URL field of

request line:

§  POST with field 1 = “monkey”
and field 2 = “banana”

www.somesite.com/animalsearch?monkeys&banana

Application Layer 2-28

Method types

HTTP/1.0:
§  GET
§  POST
§  HEAD

•  asks server to leave
requested object out
of response

•  quick response, for
debugging

HTTP/1.1:
§  GET, POST, HEAD
§  PUT

•  uploads file in entity
body to path specified
in URL field

§  DELETE
•  deletes file specified in

the URL field

15

Application Layer 2-29

HTTP response message (2.2.3)

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT

\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html;

charset=ISO-8859-1\r\n
\r\n
data data data data data ...

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer 2-30

HTTP response message format

16

Application Layer 2-31

HTTP response status codes

200 OK
•  request succeeded, requested object later in this msg

301 Moved Permanently
•  requested object moved, new location specified later in this msg

(Location:)

400 Bad Request
•  request msg not understood by server

404 Not Found
•  requested document not found on this server

505 HTTP Version Not Supported
304 Not Modified

§  status code appears in 1st line in server-to-
client response message.

§  some sample codes:

Application Layer 2-32

Trying out HTTP (client side) for yourself
1. Telnet to your favorite Web server:

 opens TCP connection to port 80
 (default HTTP server port)
 at gaia.cs.umass. edu.
anything typed in will be sent
 to port 80 at gaia.cs.umass.edu

telnet gaia.cs.umass.edu 80

2. type in a GET HTTP request:
 GET /kurose_ross/interactive/index.php HTTP/1.1

Host: gaia.cs.umass.edu by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

17

Header Lines

Depend on
§  browser type and version
§  user configuration (English or French language)
§  has a cached version?

Application Layer 2-33

Application Layer 2-34

User-server Interactions: Cookies
Many Web sites use cookies to

identify users.
Four components:

1) cookie header line in
HTTP response message

2) cookie header line in next
HTTP request message

3) cookie file kept on user’s
host, managed by user’s
browser

4) back-end database at
Web site

18

Cookies: Example

§  Susan always access Internet from PC
§  visits specific e-commerce site for first time
§ when initial HTTP requests arrives at site, site creates:

•  unique ID
•  entry in backend database for ID

Application Layer 2-35

Application Layer 2-36

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678 ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

19

Application Layer 2-37

Cookies (continued)
what cookies can be used

for:
§  authorization
§  shopping carts
§  recommendations
§  user session state (Web

e-mail)

cookies and privacy:
§  cookies allow sites to

learn a lot about you
§  you may supply name and

e-mail to sites

aside

how to keep “state”:
§  protocol endpoints: maintain state at

sender/receiver over multiple
transactions

§  cookies: http messages carry state

Application Layer 2-38

Web caches (proxy server) (2.2.5)

§  user sets browser: Web
accesses via cache

§  browser sends all HTTP
requests to cache

•  if object in cache:
cache returns object

•  else cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

20

Application Layer 2-39

More about Web caching

§  cache acts as both
client and server
•  server for original

requesting client
•  client to origin server

§  typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
§  reduce response time

for client request
§  reduce traffic on an

institution’s access link
§  Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-40

Caching example:

origin
servers

public
 Internet

institutional
network

100 Mbps LAN

15 Mbps
access link

assumptions:
§  avg object size: 1 Mbits
§  avg request rate from browsers to

origin servers: 15 requests/sec
§  avg data rate to browsers: 15 Mbps
§  RTT from institutional router Rs to

any origin server (“Internet delay”): 2
seconds

§  access link rate: 15 Mbps

consequences:
§  LAN utilization: 15%
§  access link utilization = 100%
§  total delay = Internet delay + access

delay + LAN delay
 = 2 sec + minutes + msecs

problem!

Rs

21

Application Layer 2-41

assumptions:
§  avg object size: 1 Mbits
§  avg request rate from browsers to

origin servers:15 requests/sec
§  avg data rate to browsers: 15 Mbps
§  RTT from institutional router Rs to

any origin server: 2 sec
§  access link rate: 15 Mbps

consequences:
§  LAN utilization: 15%
§  access link utilization = 100%
§  total delay = Internet delay + access

delay + LAN delay
 = 2 sec + minutes + msecs

Caching example: fatter access link

origin
servers

15 Mbps
access link 100 Mbps 100 Mbps

msecs

Cost: increased access link speed (not cheap!)

 15%

public
 Internet

institutional
network

100 Mbps LAN

institutional
network 100 Mbps LAN

Application Layer 2-42

Caching example: install local cache

origin
servers

15 Mbps
access link

local web
cache

assumptions:
§  avg object size: 1 Mbits
§  avg request rate from browsers to

origin servers:15 requests /sec
§  avg data rate to browsers: 15 Mbps
§  RTT from institutional router to any

origin server: 2 sec
§  access link rate: 15 Mbps

consequences:
§  LAN utilization: 15%
§  access link utilization = 100%
§  total delay = Internet delay + access

delay + LAN delay
 = 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap! Inexpensive PCs)

public
 Internet

22

Application Layer 2-43

Caching example: install local cache (cont.)
Calculating access link

utilization, delay with cache:
§  suppose cache hit rate is 0.4

•  40% requests satisfied at cache,
60% requests satisfied at origin

origin
servers

15 Mbps
access link

§  access link utilization:
§  60% of requests use access link

§  data rate to browsers over access link
 = 0.6*15 Mbps = 9 Mbps
§  utilization of access link = 9/15 = 60%

§  total delay
§  = 0.6 * (delay from origin servers) + 0.4

* (delay when satisfied at cache)
§  = 0.6 (2.01) + 0.4 (10ms) = 1.2 secs
§  less than with 100 Mbps link (and

cheaper too!)

public
 Internet

institutional
network 100 Mbps LAN

local web
cache

delay from cache to browser: 10msec

Conditional GET

§  Copy of an object in a cache may be stale.

§  Condition GET allows a cache to verify that its
objects are up to date.
•  Request message sent by cache uses GET method
•  Request message includes header line
If-Modified-Since:!

Application Layer 2-44

23

Conditional GET: First Download

Application Layer 2-45

One week later …

Application Layer 2-46

24

Application Layer 2-47

Chapter 2: next time …

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

•  SMTP, POP3, IMAP
•  Web-based e-mail

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

