Recursion

notes Chapter 8

Tower of Hanoi

B| c|

» move the stack of n disks from A to C

» can move one disk at a time from the top of one stack onto
another stack

» cannot move a larger disk onto a smaller disk

Tower of Hanoi

» legend says that the world will end when a 64 disk
version of the puzzle is solved

» several appearances in pop culture
» Doctor Who

» Rise of the Planet of the Apes
» Survior: South Pacific

Tower of Hanoi

» move disk from A to C

Tower of Hanoi

Tower of Hanoi

» move disk from A to B

Tower of Hanoi

» move disk from A to C

Tower of Hanoi

» move disk from B to C

Tower of Hanoi

Tower of Hanoi

» move disk from A to C

Tower of Hanoi

» move disk from A to B

Tower of Hanoi

» move disk from C to B

Tower of Hanoi

» move disk from A to C

Tower of Hanoi

» move disk from B to A

Tower of Hanoi

» move disk from B to C

Tower of Hanoi

» move disk from A to C

Tower of Hanoi

Tower of Hanoi

» write a loop-based method to solve the Tower of Hanoi
problem

» discuss amongst yourselves now...

Tower of Hanoi

» imagine that you had the following method (see next

slide)

» how would you use the method to solve the Tower of Hanoi
problem?

» discuss amongst yourselves now...

Tower of Hanoi

* Prints the sequence of moves required to move n disks from the
* starting pole (from) to the goal pole (to) using a third pole
* (using).

* @param n

* the number of disks to move
* @param from

* the starting pole

* @param to

* the goal pole

* @param using

* a third pole

* @pre. n is greater than 0

*/

public static void move(int n, String from, String to, String using)

Tower of Hanoi

B| c|

» you eventually end up at (see next slide)...

Tower of Hanoi

» move disk from A to C

Tower of Hanoi

» move (n - 1) disks from B to C using A

Tower of Hanoi

Tower of Hanoi

» notice that to solve the n = 4 size problem, you have to
solve a variation of the n = 3 size problem twice and a
variation of the n =1 size problem once

» we can use the move method to solve these 3 sub-
problems

Tower of Hanoi

» the basic solution can be described as follows:
.. move (n - 1) disks from A to B
>. move1disk from A to C
3. move (n - 1) disks from B to C

» furthermore:

» if exactly n == 1 disk is moved, print out the starting pole
and the goal pole for the move

Tower of Hanoi

public static void move(int n, String from, String to, String using) {
if (n == 1) {
System.out.println("move disk from

}

else {

+ from + " to " + to);

move(n - 1, from, using, to);
move(1, from, to, using);

move(n - 1, using, to, from);

Printing n of Something

» suppose you want to implement a method that prints
out n copies of a string

public static void printIt(String s, int n) {
for(int 1 = 0; i < n; i++) {
System.out.print(s);
}
}

A Different Solution

» alternatively we can use the following algorithm:

.. if n == o done, otherwise
I. print the string once

1. print the string (n - 1) more times

public static void printItToo(String s, int n) {
if (n == 0) {
return;
}
else {
System.out.print(s);
printItToo(s, n - 1); // method invokes itself

Recursion

» a method that calls itself is called a recursive method

» arecursive method solves a problem by repeatedly
reducing the problem so that a base case can be
reached

printItToo("*", 5)

* L mn * mn

printItToo ("*", 4) Notice that the number of times
**printItToo ("*", 3) the string is printed decreases
**¥*¥ppintItToo ("*", 2) after each recursive call to printlt
*¥***ppintItToo ("*", 1)

*k*kxx*xppintItToo ("*", @) base case Notice that the base case is
sk ok kK ok eventually reached.

Infinite Recursion

» if the base case(s) is missing, or never reached, a
recursive method will run forever (or until the
computer runs out of resources)

public static void printItForever(String s, int n) {
// missing base case; infinite recursion
System.out.print(s);
printItForever(s, n - 1);

printItForever("*", 1)
* printItForever("*", 0)
** printItForever("*", -1)

Climbing a Flight of n Stairs

» not Java

/**
* method to climb n stairs
*/
climb(n) :
if n ==
done
else
step up 1 stair
climb(n - 1);
end

Rabbits

% Month o: 1 pair o additional pairs
‘\"'. fu4
> 1

) D Month 1: first pair 1 additional pair
BN\ S \ Q¥
NN AL

makes another pair

Month 2: each pair 1additional pair

))
V makes another pair;
A WX oldest pair dies
)) 2 additional pairs
NS ‘((Nk \\‘. 1 f(ld \\& s !(

Month 3: each pair
makes another pair;
--- oldest pairdies -

Fibonacci Numbers

» the sequence of additional pairs
»0, 1, 1, 2, 3, 5, 8, 13, ...
are called Fibonacci numbers

» base cases
» F(0) = ©
» F(1) = 1
» recursive definition
» F(n) = F(n - 1) + F(n - 2)

Recursive Methods & Return Values

» arecursive method can return a value
» example: compute the nth Fibonacci number

public static int fibonacci(int n) {
if (n == 9) {
return O;

}
else if (n == 1) {
return 1;

}

else {
int f = fibonacci(n - 1) + fibonacci(n - 2);

return f;

Recursive Methods & Return Values

» write a recursive method that multiplies two positive

integer values (i.e., both values are strictly greater than
Z€ero)

» observation: m X n means add m n's together

» in other words, you can view multiplication as recursive
addition

Recursive Methods & Return Values

» not Java:

/**
* Computes m * n

*/
multiply(m, n) :
if m ==
return n
else
return n + multiply(m - 1, n)

public static int multiply(int m, int n) {
if (m == 1) {
return n;

}

return n + multiply(m - 1, n);

Recursive Methods & Return Values

» example: write a recursive method countZeros that
counts the number of zeros in an integer number n

» 10305060700002L has 8 zeros

» trick: examine the following sequence of numbers
190305060700002

1030506070000

103050607000

10305060700

1030506070

103050607 ...

a v Ao W N R

Recursive Methods & Return Values

» not Java:

/**

* Counts the number of zeros in an integer n
*/
countZeros(n) :
if the last digit in n is a zero
return 1 + countZeros(n / 10)

else
return countZeros(n / 10)

» don't forget to establish the base case(s)

» when should the recursion stop? when you reach a single
digit (not zero digits; you never reach zero digits!)

» basecase#1:n ==
O return 1

» basecase#2:n !I= 0 & n < 10
O return O

public static int countZeros(long n) {

if(n == 0L) { // base case 1
return 1;

}
else if(n < 10L) { // base case 2

return O;

}

boolean lastDigitIsZero = (n % 10L == 0);
final long m = n / 10L;
if(lastDigitIsZero) {

return 1 + countZeros(m);
}
else {

return countZeros(m);

countZeros Call Stack

countZeros(800410L)

last in first out

countZeros(8L) %)
countZeros(80L) 1+0
countZeros(800L) 1+1+0

countZeros(8004L) ©+1+1+0

countZeros(80041L) ©+0+1+1+0

countZeros(800410L) 1+0+0+1+1+80
= 3

Fibonacci Call Tree

F(3) F(2) F(2) F(1)
/\ /\ /\ 1
F(2) F(1) F(1) [|F(@) | [F(1)] |F(@)
/\ 1 1 (%) 1 (%)
F(1) | [F(@)
1 0

Compute Powers of 10

» write a recursive method that computes 10" for any
integer value n
» recall:
» 109 = 1
» 10" = 10 * 19"°1
» 10" =1 / 10"

public static double powerOf10(int n) {
if (n == 0) {
// base case
return 1.0;

}
else if (n > 0) {

// recursive call for positive n
return 10.0 * powerOflo(n - 1);
}

else {
// recursive call for negative n

return 1.0 / power0Of10(-n);

Fibonacci Numbers

» the sequence of additional pairs
»0, 1, 1, 2, 3, 5, 8, 13, ...
are called Fibonacci numbers

» base cases
» F(0) = ©
» F(1) = 1
» recursive definition
» F(n) = F(n - 1) + F(n - 2)

Recursive Methods & Return Values

» arecursive method can return a value
» example: compute the nth Fibonacci number

public static int fibonacci(int n) {
if (n == 9) {
return O;

}
else if (n == 1) {
return 1;

}

else {
int f = fibonacci(n - 1) + fibonacci(n - 2);

return f;

Fibonacci Call Tree

F(3) F(2) F(2) F(1)
/\ /\ /\ 1
F(2) F(1) F(1) [|F(@) | [F(1)] |F(@)
/\ 1 1 (%) 1 (%)
F(1) | [F(@)
1 0

A Better Recursive Fibonacci

public class Fibonacci {
private static Map<Integer, Long> values = new HashMap<Integer, Long>();
static {
Fibonacci.values.put(0, (long) 0);
Fibonacci.values.put(1, (long) 1);

}

public static long getValue(int n) {
Long value = Fibonacci.values.get(n);
if (value !'= null) {
return value;
}
value = Fibonacci.getValue(n - 1) + Fibonacci.getValue(n - 2);
Fibonacci.values.put(n, value);
return value;

Better Fibonacci Call Tree

1 values in blue are already stored
in the map

A Better Recursive Fibonacci

» because the map is static subsequent calls to
Fibonacci.getValue(int) can use the values already
computed and stored in the map

Better Fibonacci Call Tree

» assuming the client has already invoked
Fibonacci.getValue(5)

F(5) F(4)
5 3

values in blue are already stored
in the map

Compute Powers of 10

» write a recursive method that computes 10" for any
integer value n

» recall:
» 10" =1 / 10™" ifn < @
» 109 = 1
» 10" = 10 * 10"

public static double powerOf10(int n) {
if((n<0){
return 1.0 / powerOf10(-n);
}
else if (n == 0) {
return 1.0;

}
return n * powerOf10(n - 1);

}

A Better Powers of 10

» recall:
» 10" =1 / 10™" ifn < 0
» 109 = 1
» 10" = 190 * 19"°1 if n is odd
» 10" = 10"/2 * 10"/2 ifniseven

public static double powerOf10(int n) {
if((n<0){
return 1.0 / powerOf10(-n);
}
elseif (n == 0) {
return 1.0;
}
elseif(N% 2 ==1) {
return 10 * powerOf10(n - 1);
}
double value = powerOf10(n / 2);
return value * value;

What happens during recursion

What Happens During Recursion

» a simplified model of what happens during a recursive
method invocation is the following:
» whenever a method is invoked that method runs in a new
block of memory

» when a method recursively invokes itself, a new block of memory
is allocated for the newly invoked method to run in

» consider a slightly modified version of the power0f10
method

59

public static double powerOf10(int n) {
double result;
if((n<0){
result = 1.0 / powerOf10(-n);
}
else if (n == 0) {
result = 1.0;
}
else {
result = 10 * powerOf10(n - 1);
}

return result;

60

double x = Recursion.power0f10(3);

100 main method

X power0f10(3)

61

double x = Recursion.power0f10(3);

n

result

100 main method
X power0f10(3)

600

power0f10 method

3

a stack frame

» methods occupy space in a region of memory called the call stack

 information regarding the state of the method is stored in a stack frame

 the stack frame includes information such as the method parameters, local
variables of the method, where the return value of the method should be
copied to, where control should flow to after the method completes, ...

» stack memory can be allocated and deallocated very quickly, but this speed is
obtained by restricting the total amount of stack memory

 if you try to solve a large problem using recursion you can exceed the available
amount of stack memory which causes your program to crash

62

double x = Recursion.power0f10(3);

100

main method

power0f10(3)

n

result

600

power0f10 method

3

10 * power0f10(2)

double x = Recursion.power0f10(3);

600 power0f10 method

n 3
100 main method result i
X power0f10(3)
750 power0f10 method
n 2
result

double x = Recursion.power0f10(3);

600 power0f10 method

n 3
100 main method result i
X power0f10(3)
750 power0f10 method
n 2
result 10 * powerOfi10(1)

double x = Recursion.power0f10(3);

600 power0f10 method

n 3
100 main method result i
X power0f10(3)
750 power0f10 method
n 2
result 10 * powerOfi10(1)

800 power0f10 method

n 1

result 10 * power0f10(0)

66

double x = Recursion.power0f10(3);

600 power0f10 method

n 3
100 main method result i
X power0f10(3)
750 power0f10 method
n 2
result 10 * powerOfi10(1)

800 power0f10 method

n 1

result 10 * power0f10(0)

950 power0f10 method

n (%)

result

double x = Recursion.power0f10(3);

600 power0f10 method

n 3
100 main method result i
X power0f10(3)
750 power0f10 method
n 2
result 10 * powerOfi10(1)

800 power0f10 method

n 1

result 10 * power0f10(0)

950 power0f10 method

n (%)

result 1

68

double x = Recursion.power0f10(3);

600 power0f10 method

n 3
100 main method result i
X power0f10(3)
750 power0f10 method
n 2
result 10 * powerOfi10(1)

800 power0f10 method

n 1

result 10 * 1

950 power0f10 method

n (%)

result 1

double x = Recursion.power0f10(3);

600 power0f10 method

n 3
100 main method result i
X power0f10(3)
750 power0f10 method
n 2
result 10 * powerOfi10(1)

800 power0f10 method

n 1

result 10

70

double x = Recursion.power0f10(3);

600 power0f10 method

n 3
100 main method result i
X power0f10(3)
750 power0f10 method
n 2
result 10 * 10

800 power0f10 method

n 1

result 10

71

double x = Recursion.power0f10(3);

600 power0f10 method

n 3

result 10 * powero0f10(2)

100 main method
X power0f10(3)

750 power0f10 method

n 2

result 100

72

double x = Recursion.power0f10(3);

600 power0f10 method

n 3

result 10 * 100

100 main method
X power0f10(3)

750 power0f10 method

n 2

result 100

73

double x = Recursion.power0f10(3);

100

74

main method

power0f10(3)

n

result

600

power0f10 method

3

1000

double x = Recursion.power0f10(3);

600 power0f10 method

n 3

result 1060

100 main method
X 1000

75

double x = Recursion.power0f10(3);

100 main method

X 1000

77

Recursion and collections

Recursion and Collections

» consider the problem of searching for an element in a
list

» searching a list for a particular element can be
performed by recursively examining the first element
of the list

» if the first element is the element we are searching for then
we can return true

» otherwise, we recursively search the sub-list starting at the
next element

The L1st method subList

» List has a very useful method named subList:

List<E> subList(int fromIndex, int toIndex)

Returns a view of the portion of this list between the
specified fromIndex, inclusive, and toIndex, exclusive.
(If fromIndex and toIndex are equal, the returned list
is empty.) The returned list is backed by this list, so non-
structural changes in the returned list are reflected in
this list, and vice-versa. The returned list supports all of
the optional list operations supported by this list.

79 http://docs.oracle.com/javase/7/docs/api/java/util/List.html#subList%28int,%20int%29

http://docs.oracle.com/javase/7/docs/api/java/util/List.html#subList%28int,%20int%29

subList examples

» the sub-list excluding the first element of the original
list

|
t.sublList(1, t.size())

List<Integer> u = t.sublList(1, t.size());
int first_u = u.get(0); // 8
int last_u = u.get(u.size() - 1); //9

8o

subList examples

» the sub-list excluding the last element of the original
list

|
t.sublList(0, t.size() - 1)

List<Integer> u = t.sublList(0, t.size() - 1);
int first_u = u.get(0); //0
int last_u = u.get(u.size() - 1); // 2

81

subList examples

» the sub-list excluding the first 3 and last 3 elements of
the original list

|
t.sublList(3, t.size() - 3)

List<Integer> u = t.sublList(3, t.size() - 3);
int first_u = u.get(0); // 6
int last_u = u.get(u.size() - 1); //5

82

subList examples

» modifying an element using the sublist modifies the
element of the original list

t
A

0 8 7 6 4 1100 5 1 2 9

|
t.sublList(1, t.size())

List<Integer> u = t.sublList(1, t.size());
u.set(4, 100); // set element at index 4 of u
int val_in_t = t.get(5); // 100

33

Recursively Search a List

ContainS("X", [Ilzll, llQIl, IIBII, Ilel, IlJll])

> "X".equals("Z") == false
> contains("X", ["Q", "B"™, "X", "J"]) recursive call

> "X".equals("Q") == false
> contains("X", ["B", "X", "J"]) recursive call

> "X".equals("B") == false
> contains("X", ["X", "J1"]) recursive call

> "X".equals("X") == true done!

Recursively Search a List

» base case(s)?

» recall that a base case occurs when the solution to the
problem is known

public class Recursion {

public static <T> boolean contains(T element, List<T> t) {

boolean result;
if (t.size() == 0) { // base case
result = false;

}
else if (t.get(0).equals(element)) { // base case

result = true;

}

86

Recursively Search a List

» recursive call?
» to help deduce the recursive call assume that the method
does exactly what its API says it does

» e.g., contains(element, t) returns true if element isin the
list t and false otherwise

» use the assumption to write the recursive call or calls

public class Recursion {

public static <T> boolean contains(T element, List<T> t) {
boolean result;
if (t.size() == 0) { // base case
result = false;
}
else if (t.get(0).equals(element)) { // base case
result = true;

}
else { // recursive call
result = Recursion.contains(element, t.subList(1, t.size()));
}
return result;
}

38

Recursion and Collections

» consider the problem of moving the smallest element
in a list of integers to the front of the list

Recursively Move Smallest to Front

8|76 |4 |3 |5|0]2]|9 |1 original list

8|17 |16 (4 3| 5|02 9 | 1| recursion

move the smallest eiement of this sublist
to the front of the sublist

90

Recursively Move Smallest to Front

8|76 |4 |3 |5|0]2]|9|1 original list

8|7 |6 (4 3| 5|02 [9 | 1| recursion

move the smallest eiement of this sublist
to the front of the sublist

8 | O | oo | v | e | e | e | e | e | e compare

compare these two elements and move the
smallest one to the front (swapping positions)

O | 8 | .o | oo | coo | e | e | e | | e updated list

o1

Recursively Move Smallest to Front

» base case?

» recall that a base case occurs when the solution to the
problem is known

02

Recursively Move Smallest to Front

public class Recursion {

public static void minToFront(List<Integer> t) {
if (t.size() < 2) {
return;

}

93

Recursively Move Smallest to Front

» recursive call?
» to help deduce the recursive call assume that the method
does exactly what its API says it does

» e.g., moveToFront(t) moves the smallest element in t to the
front of t

» use the assumption to write the recursive call or calls

94

Recursively Move Smallest to Front

public class Recursion {

public static void minToFront(List<Integer> t) {
if (t.size() < 2) {
return;

}

Recursion.minToFront(t.subList(1, t.size()));

95

Recursively Move Smallest to Front

» compare and update?

Recursively Move Smallest to Front

public class Recursion {

public static void minToFront(List<Integer> t) {
if (t.size() < 2) {
return;
}
Recursion.minToFront(t.subList(1, t.size()));
int first = t.get(0);
int second = t.get(1);
if (second < first) {
t.set(0, second);
t.set(1, first);
}
}
}

97

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the second through last
elements:

0 8 7 6 4 3 5 1 2 9

|
minToFront

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the third through last elements:

|
minToFront

99

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the fourth through last
elements:

0 1 2 8 7 6 4 3 5 9

|
minToFront

100

Sorting the List

» if you keep calling minToFront until you reach a
sublist of size two, you will sort the original list:

0 1 2 3 4 5 6 7 8 9

l_'_l

minToFront

» this is the selection sort algorithm

101

Selection Sort

public class Recursion {
// minToFront not shown

public static void selectionSort(List<Integer> t) {
if (t.size() > 1) {
Recursion.minToFront(t);
Recursion.selectionSort(t.subList(1, t.size()));

}
}

102

Jump It

board of n squares, n >= 2
start at the first square on left
on each move you can move 1 or 2 squares to the right

v v v Vv

each square you land on has a cost (the value in the square)

» costs are always positive

» goal is to reach the rightmost square with the lowest cost

103

Jump It

» solution for example:
» Imove 1square
» mmove 2 squares

» move 2 squares
0 totalcost=0+3+6+10=19

» can the problem be solved by always moving to the
next square with the lowest cost?

104

Jump It

» no, it might be better to move to a square with higher
cost because you would have ended up on that square

anyway

move to next square
with lowest cost

(N Nr

17 1) 6 1

optimal strategy

105

S\ /

cost 17+1+5+1=24

COSt 17+5+1=23

Jump It

» sketch a small example of the problem
» it will help you find the base cases
» it might help you find the recursive cases

106

Jump It

» base case(s):
» board.size() ==

» no choice of move (must move 1 square)
» cost = board.get(0) + board.get(1);

» board.size() ==

» move 2 squares (avoiding the cost of 1 square)
» cost = board.get(0) + board.get(2);

107

Jump It

public static int cost(List<Integer> board) {
if (board.size() == 2) {
return board.get(@) + board.get(1);

}
if (board.size() == 3) {
return board.get(@) + board.get(2);

108

Jump It

» recursive case(s):
» compute the cost of moving 1 square

» compute the cost of moving 2 squares

» return the smaller of the two costs

109

Jump It

public static int cost(List<Integer> board) {
if (board.size() == 2) {
return board.get(@) + board.get(1);
}
if (board.size() == 3) {
return board.get(@) + board.get(2);

}
List<Integer> afterOneStep

board.subList(1, board.size());
board.subList(2, board.size());

List<Integer> afterTwoStep
int ¢ = board.get(0);
return ¢ + Math.min(cost(afterOneStep), cost(afterTwoStep));

110

Jump It

» can you modify the cost method so that it also
produces a list of moves?

» e.g., for the following board

0 3 80 6 S7 10

the method produces the list [1, 2, 2]
» consider using the following modified signature

public static int cost(List<Integer> board, List<Integer> moves)

111

» the Jump It problem has a couple of nice properties:

» the rules of the game make it impossible to move to the
same square twice

» the rules of the games make it impossible to try to move off

of the board
» consider the following problem

112

» given a list of non-negative integer values:

» starting from the first element try to reach the last element
(whose value is always zero)

» you may move left or right by the number of elements equal
to the value of the element that you are currently on

» you may not move outside the bounds of the list

13

Solution 1

114

Solution 1

15

Solution 1

16

Solution 1

17

Solution 1

18

Solution 1

19

Solution 2

120

Solution 2

121

Solution 2

122

Solution 2

123

Solution 2

124

Solution 2

125

Solution 2

126

Cycles

» it is possible to find cycles where a move takes you
back to a square that you have already visited

127

Cycles

» using a cycle, it is easy to create a board where no
solution exists

128

Cycles

» on the board below, no matter what you do, you
eventually end up on the 1 which leads to a cycle

129

No Solution

» even without using a cycle, it is easy to create a board
where no solution exists

1 100 2 o

130

» unlike Jump It, the board does not get smaller in an
obvious way after each move

» but it does in fact get smaller (otherwise, a recursive
solution would never terminate)
» how does the board get smaller?
» how do we indicate this?

131

Recursion

) recursive cases:

» can we move left without falling off of the board?
» if so, can the board be solved by moving to the left?

» can we move right without falling off of the board?
» if so, can the board be solved by moving to the right?

132

/**
* Is a board is solvable when the current move is at location
* index of the board? The method does not modify the board.

* @param index
* the current location on the board
* @param board
* the board
* @return true if the board is solvable, false otherwise
*/
public static boolean isSolvable(int index, List<Integer> board) {

}

133

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArrayList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;

134

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {

135

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {
winLeft = isSolvable(index - value, copy);

136

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {
winLeft = isSolvable(index - value, copy);

copy = new ArraylList<Integer>(board);
copy.set(index, -1);

137

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {
winLeft = isSolvable(index - value, copy);

copy = new ArraylList<Integer>(board);
copy.set(index, -1);

boolean winRight = false;

if ((index + value) < board.size()) {

138

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {
winLeft = isSolvable(index - value, copy);

copy = new ArraylList<Integer>(board);

copy.set(index, -1);

boolean winRight = false;

if ((index + value) < board.size()) {
winRight = isSolvable(index + value, copy);

139

public static boolean isSolvable(int index, List<Integer> board) {
// base cases here
int value = board.get(index);
List<Integer> copy = new ArraylList<Integer>(board);
copy.set(index, -1);
boolean winLeft = false;
if ((index - value) >= 0) {
winLeft = isSolvable(index - value, copy);

works, but does a lot of
unnecessary computation;
can you improve on this
copy.set(index, -1); solution?

boolean winRight = false;

copy = new ArraylList<Integer>(board);

if ((index + value) < board.size()) {
winRight = isSolvable(index + value, copy);

}

return winLeft || winRight;

140

Base Cases

» base cases:
» we've reached the last square

» board is solvable

» we've reached a square whose value is -1

» board is not solvable

141

public static boolean isSolvable(int index, List<Integer> board) {
if (board.get(index) < 0) {
return false;

}
if (index == board.size() - 1) {
return true;

}

// recursive cases go here...

142

Recursion: Computational Complexity

143

Recursively Move Smallest to Front

public class Recursion {
size of problem, n, is
public static void minToFront(List<Integer> t) { the number of elements
if (t.size() < 2) { in the list t
return;
}
Recursion.minToFront(t.subList(1, t.size()));
int first = t.get(0);
int second = t.get(1);
if (second < first) {
t.set(0, second);
t.set(1, first);
}
}
}

144

Estimating complexity

» the basic strategy for estimating complexity:

1. for each line of code, estimate its number of elementary
instructions

». for each line of code, determine how often it is executed
3. determine the total number of elementary instructions

145

Elementary instructions

» what is an elementary instruction?

» for our purposes, any expression that can be computed in a
constant amount of time

» examples:

declaring a variable
assignment (=)

arithmetic (+, -, *, /, %)
comparison (<, >, ==, |=)
Boolean expressions (||, &&, !)
if, else

vV Vv Vv V9V V9v V9v V9

return statement

146

Estimating complexity

» count the number of elementary operations in each
line of minToFront

» assume that the following are all elementary operations:

» t.size()

» t.get(0)

» t.get(1)

» t.set(0, ...)

» t.set(1l, ...)

» t.subList(x, y)

» leave the line with the recursive call blank for now

147

Recursively Move Smallest to Front

public class Recursion {

number of
elementary ops
public static void minToFront(List<Integer> t) {
if (t.size() < 2) { 3
return; 1
}
Recursion.minToFront(t.sublList(1, t.size()));
int first = t.get(0); 3
int second = t.get(1); 3
if (second < first) { 2
t.set(0, second); 1
t.set(1, first); 1
}
}

}

148

Estimating complexity

» for each line of code, determine how often it is
executed

149

Recursively Move Smallest to Front

public class Recursion {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) { 1
return; Tor0

}

Recursion.minToFront(t.subList(1, t.size())); Tor0

int first = t.get(0); Tor0

int second = t.get(1); T1or0

if (second < first) { 1or0
t.set(0, second); Tor0
t.set(1, first); Tor0

}

}

}

150

Total number of operations

» before we can determine the total number of
elementary operations, we need to count the number
of elementary operations arising from the recursive
call

» let T(n) be the total number of elementary operations
required by minToFront(t)

151

Total number of operations

public class Recursion {

public static void minToFront(List<Integer> t) {

Recursion.minToFront(t.subList(1, t.size()));
l—'—l

1 elementary operation

152

Total number of operations

public class Recursion {

public static void minToFront(List<Integer> t) {

Recursion.minToFront(t.subList(1, t.size()));

1 elementary operation

153

Total number of operations

public class Recursion {

public static void minToFront(List<Integer> t) {

Recursion.minToFront(t.subList(1, t.size()));

154

Total number of operations

public class Recursion {

public static void minToFront(List<Integer> t) {
Recursion.minToFront(t.subList(1, t.size()));

1 elementary operation =Tn—-1)+2

1 elementary operation

155

Total number of operations

public class Recursion {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) {
return: these lines run if the
} ' base case is true

Recursion.minToFront(t.subList(1, t.size()));
int first = t.get(0);
int second = t.get(1);
if (second < first) {
t.set(0, second);
t.set(1, first);
}
}
}

156

Total number of operations

public class Recursion {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) { 3*1
return; 1*1

}

Recursion.minToFront(t.sublList(1, t.size())); (T(n-1) + 2) * 1

int first = t.get(0); 3*1

int second = t.get(1); 3*1

if (second < first) { 2*1
t.set(0, second); 1*1
t.set(1, first); 1*1

}

}

}

157

Total number of operations

» base cases
» T(0)=T(1) =4

158

Total number of operations

public class Recursion {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) { this line runs if the base case is not true
return;

}

Recursion.minToFront(t.subList(1, t.size()));

int first = t.get(0); these lines run if the

int second = t.get(1); base case is not true

if (second < first) {
t.set(0, second); these lines might run if the
t.set(1, first): base case is not true

}

}

}

159

Total number of operations

» when counting the total number of operations, we
often consider the worst case scenario

» let’s assume that the lines that might run always run

160

Total number of operations

public class Recursion {

public static void minToFront(List<Integer> t) {

if (t.size() < 2) { 3*1
return; 1*1

}

Recursion.minToFront(t.subList(1, t.size())); (T(n-1) + 2) * 1

int first = t.get(0); 3*1

int second = t.get(1); 3*1

if (second < first) { 2*1
t.set(0, second); 1*1
t.set(1, first); 1*1

}

}

}

161

Total number of operations

» base cases
» T(0)=T(1) =4
» recursive case
» T(n)=T(n—1)+ 15

» the two equations above are called the recurrence
relation for minToFront

162

Selection Sort

public class Recursion {

// minToFront not shown

number of

?
public static void selectionSort(List<Integer> t) { elementary ops?

if (t.size() > 1) {
Recursion.minToFront(t);
Recursion.selectionSort(t.subList(1, t.size()));

}
}

163

Total number of operations

» base cases
» T(0)=T(1) =4
» recursive case
» T(n)=T(n—1)+ 15

» the two equations above are called the recurrence
relation for minToFront

» let’s try to solve the recurrence relation

164

Solving the recurrence relation

T(0) =4
T(1) =4
Tn)=T(n—-1)+15

» if we knew T'(n — 1) we could solve for T'(n)

T(n) =T(n—1) + 15 T(n—1) =T(n—-2)+ 15
= (T(n—2) + 15) + 15
=T(n—2) + 2(15)

165

Solving the recurrence relation

T(0) =4
T(1) =4
Tn)=T(n—-1)+15

» if we knew T'(n — 2) we could solve for T'(n)

T(n) = T(n—1) + 15 T(n—1) =T —2) + 15
= (T(n—2) + 15) + 15
=Tn—-2)+ 2(15) Thn—2)=T(n-3)+ 15

= (T(n—3) + 15) + 2(15)
= T(n —3) + 3(15)

166

Solving the recurrence relation

T(0) =4
T(1) =4
Tn)=T(n—-1)+15

» if we knew T'(n — 3) we could solve for T'(n)

T(n) =T —1) + 15 T(n—1)=T(n—-2)+ 15
= (T(n—2) + 15) + 15
=Tn—-2)+ 2(15) Tn—2)=T(n—-3)+ 15
= (T(n —3) + 15) + 2(15)
=T(n —3) + 3(15) T(m—3)=Tn—4)+15

= (T(n— 4) + 15) + 3(15)
=T(n —4) + 4(15)

Solving the recurrence relation

T(0) =4
T(1) =4
T(n)=T(n—1)+ 15

» there is clearly a pattern

T(n) =T —k) + k(15)

168

Solving the recurrence relation

T(0) =4
T(1) =4
Tn)=T(n—-1)+15

» substitute k = n — 1 so that we reach a base case

T(n) =T —k) + k(15)
= T(n —(n— 1)) + (n—1)(15)
=T(1) + 15n — 15
=4+ 15n—-15
= 15n — 11 € O(n)

169

Big-O notation

» Proof: f(n) =15n—11,g(n) = n

Forn>1, f(n) > 0and g(n) = 0; therefore, we do not
need to consider the absolute values. We need to find M
and m such that the following is true:

15n — 11 < Mn forall n > m

For n > 0 we have:
15n—11 15n

< =15
n n

~15n—11 < 15nforalln > 0and T(n) € O(n)

170

Try to solve the recurrence relation

T(1) =1
T(n)=T(n—1)+ 3n

171

Try to solve the recurrence relation

T(1) =7
T(n) =T (g) +1

Try to solve the recurrence relation

T(0) = 3
T(1) =3
TnM)=Tn—1)+Mn+5

173

Divide and Conquer

» divide and conquer algorithms typically recursively
divide a problem into several smaller sub-problems
until the sub-problems are small enough that they can
be solved directly

174

Merge Sort

» merge sort is a divide and conquer algorithm that sorts
a list of numbers by recursively splitting the list into
two halves

a3 s] 2 K BE
\ /
2 [3 5 |[2 s 7 6|1

175

» the split lists are then merged into sorted sub-lists

176

ik

Y

1

e

Merging Sorted Sub-lists

» two sub-lists of length 1

left right

4 3

result

1 comparison
2 copies

177

LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int TR = right.getFirst();

if (fL < fR) {
result.add(fL);
left.removeFirst();

+
else {
result.add(fR);
right.removeFirst();
+

It (left.isEmpty()) {
result.addAll(right);

}

else {
result.addAll (left);

}

178

Merging Sorted Sub-lists

» two sub-lists of length 2

left

3

4

result

right

2“3

4

3 comparisons
4 copies

179

LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0) {
int fL = left.getFirst();
int fR = right._.getFirst();
if (fL < fR) {
result.add(fL);
left.removeFirst();

+
else {
result.add(fR);
right.removeFirst();
+
+

iIT (left.isempty(Q)) {
result.addAll(right);

}

else {
result.addAll (left);

}

180

Merging Sorted Sub-lists

» two sub-lists of length 4

181

left right

3

4 11 5 16| 7

5 comparisons
8 copies

Simplified Complexity Analysis

» in the worst case merging a total of n elements
requires
n —1 comparisons +
n copies
= 2n — 1 total operations

» the worst-case complexity of merging is the order of
O(n)

182

Informal Analysis of Merge Sort

4

suppose the running time (the number of operations)
of merge sort is a function of the number of elements
to sort

» let the function be T(n)

merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists

» this takes 2T(n/2) running time

then the sub-lists are merged
» this takes O(n) running time

total running time T(n) = 2T(n/2) + O(n)

183

Solving the Recurrence Relation

T(n) — 2T(n/2) + O(n) T(n) approaches...
~ 2T(n/2) + n

2[2T(n/4) + n/2 | + n

= AT(n/4) + 2n

— 4 2T(n/8) + n/4 | + 2n

= 8T(n/8) + 3n

= 8[2T(n/16) + n/8 | + 3n

= 16T(n/16) + 4n

= 2kT(n/2k) + kn

184

Solving the Recurrence Relation
T(n) = ZkT(n/2k)+kn

» for a list of length 1 we know T(1) = 1

» if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

» we have T(n/ 2) on the right-hand side, so we need to find
some value of k such that

n/2k 1= 2k k- log,(n)

185

Solving the Recurrence Relation

T(n) = 210827 T(n/Z10gz ") + nlog, n
=nT(1) +nlog,n
=n+nlog,n
€ O(nlog, n)

186

Quicksort

4

quicksort, like mergesort, is a divide and conquer
algorithm for sorting a list or array

it can be described recursively as follows:
1. choose an element, called the pivot, from the list
>. reorder the list so that:

» values less than the pivot are located before the pivot

» values greater than the pivot are located after the pivot
3. quicksort the sublist of elements before the pivot
4. quicksort the sublist of elements after the pivot

187

Quicksort

» step 2 is called the partition step

» consider the following list of unique elements

» assume that the pivot is 6

188

0

8

v

6

4

3

5

1

2

9

Quicksort

» the partition step reorders the list so that:

» values less than the pivot are located before the pivot

» we need to move the cyan elements before the pivot

» values greater than the pivot are located after the pivot

» we need to move the red elements after the pivot

_6

2.

189

Quicksort

» canyou describe an algorithm to perform the
partitioning step?
» talk amongst yourselves here

190

Quicksort

» after partitioning the list looks like:

» partioning has 3 results:

» the pivot is in its correct final sorted location
» the lelt sublist contains only elements less than the pivot

» the right sublist contains only elements greater than the
pivot

191

Quicksort

» after partitioning we recursively quicksort the left
sublist

» for the left sublist, let's assume that we choose 4 as the
pivot
» after partitioning the left sublist we get:

» we then recursively quicksort the !¢t and right sublists

0 and so on...

192

Quicksort

» eventually, the left sublist from the first pivoting
operation will be sorted; we then recursively quicksort
the right sublist:

» if we choose 8 as the pivot and partition we get:

» the left and right sublists have size 1 so there is nothing
left to do

193

Quicksort

» the computational complexity of quicksort depends
on:

» the computational complexity of the partition operation
» without proof I claim that this is O(n) for a list of size n

» how the pivot is chosen

194

Quicksort

» let's assume that when we choose a pivot we always
choose the smallest (or largest) value in the sublist

» yields a sublist of size (n — 1) which we recursively quicksort

» let T(n) be the number of operations needed to
quicksort a list of size n when choosing a pivot as
described above

» then the recurrence relation is:
T(n)=Tn—1)+ 0(n) same as selection sort
» solving the recurrence results in

T(n) = 0(n?)

195

Quicksort

» let's assume that when we choose a pivot we always
choose the median value in the sublist

» yields 2 sublists of size (g) which we recursively quicksort

» let T(n) be the number of operations needed to
quicksort a list of size n when choosing a pivot as
described above

» then the recurrence relation is:

T(n) = 2T (%) + 0(n) same as merge sort

» solving the recurrence results in

T(n) = 0(nlog, n)

196

» what is the fastest way to sort a deck of playing cards?
» what is the big-O complexity?
» talk amongst ourselves here....

197

Proving correctness and terminaton

198

Proving Correctness and Termination

» to show that a recursive method accomplishes its goal
you must prove:

. that the base case(s) and the recursive calls are correct
>. that the method terminates

199

Proving Correctness

» to prove correctness:
1. prove that each base case is correct

». assume that the recursive invocation is correct and then
prove that each recursive case is correct

200

printltToo

public static void printItToo(String s, int n) {
if (n == 0) {
return;
}
else {
System.out.print(s);
printItToo(s, n - 1);

201

Correctness of printltToo

1. (prove the base case) If n == 0 nothing is printed;
thus the base case is correct.

2. Assume that printltToo(s, n-1) prints the string
s exactly(n — 1) times. Then the recursive case
prints the string s exactly(n — 1)+1 = n times;
thus the recursive case is correct.

202

Proving Termination

» to prove that a recursive method terminates:

1. define the size of a method invocation; the size must be a
non-negative integer number

>. prove that each recursive invocation has a smaller size
than the original invocation

203

Termination of printltToo

1. printltToo(s, n) prints n copies of the string S;
define the size of printltToo(s, n) toben

>. The size of the recursive invocation
printltToo(s, n-1) isn-1 (bydefinition)
which is smaller than the original size n.

204

countZeros

public static int countZeros(long n) {

if(n == 0L) { // base case 1
return 1;

}

else if(n < 10L) { // base case 2
return O;

}

boolean lastDigitIsZero = (n % 10L == 0);
final long m = n / 10L;
if(lastDigitIsZero) {
return 1 + countZeros(m);
}
else {
return countZeros(m);
}
}

205

Correctness of countZeros

1. (base cases) If the number has only one digit then
the method returns 1 if the digit is zero and O if the

digit is not zero; therefore, the base case is correct.

. (recursive cases) Assume that
countZeros(n/10L) is correct (it returns the

number of zeros in the first (d — 1) digits of n).

There are two recursive cases:

206

Correctness of countZeros

d.

207

If the last digit in the number is zero, then the
recursive case returns 1 + the number of zeros in
the first (d — 1) digits of n, which is correct.

If the last digit in the number is one, then the
recursive case returns the number of zeros in the first
(d — 1) digits of n, which is correct.

Termination of countZeros

1. Let the size of countZeros(n) be d the number of
digits in the number n.

». The size of the recursive invocation
countZeros(n/10L) is d-1, which is smaller than

the size of the original invocation.

208

Selection Sort

public class Recursion {
// minToFront not shown

public static void selectionSort(List<Integer> t) {
if (t.size() > 1) {
Recursion.minToFront(t);
Recursion.selectionSort(t.subList(1, t.size()));

}
}

Prove that selection sort is correct and terminates.

209

Proving Termination

» prove that the algorithm on the next slide terminates

210

public class Print {

public static void done(int n) {

if(n==1){
System.out.printin(“done");

}

elseif (N % 2 == 0) {
System.out.printin(“not done");
Print.done(n / 2);

}

else {
System.out.printin(“not done");
Print.done(3 *n + 1);

}
}

211

Binary Search

» one reason that we care about sorting is that it is much
faster to search a sorted list compared to sorting an
unsorted list

» the classic algorithm for searching a sorted list is called
binary search

» to search a list of size n for a value v:
» look at the element e at index (g)

» if e > v recursively search the sublist to the left
» if e < v recursively search the sublist to the right
» if e == v then done

212

Binary Search

» consider the sorted list of sizen = 9

sublist
index

0 1 2 3 4 5

213

Binary Search

» search forv =3

1 | 3 4 5.7 8 9 | 10

index 0 1 2 3 4 5 6 7 8

9
2
e==6

mid === 4

v < e, recursively search the left sublist

214

Binary Search

» search forv =3

no longer considered
A

sublist
index

4
2
e =4

mid === 2

v < e, recursively search the left sublist

Binary Search

» search forv =3

no longer considered

| I 1
§ublist 0 1
index
'd—2—1
mi =5 =
e=3

v == ¢, done

Binary Search

» search forv = 2

1 | 3 4 5.7 8 9 | 10

0 1 2 3 4 5 6 7 8

sublist
index

9
2
e==6

mid === 4

v < e, recursively search the left sublist

217

Binary Search

» search forv = 2

no longer considered
A

sublist
index

4
2
e =4

mid === 2

v < e, recursively search the left sublist

Binary Search

» search forv = 2

no longer considered

A
| 1
§ubllst 0 1
index
'd—2—1
mi =5 =
e=3

v < e, recursively search the left sublist

Binary Search

» search forv = 2

no longer considered

f A 1
sublist
index 0
id = 1 =0
mid = 5=
e =

Binary Search

» search for v =g

1 | 3 4 5.7 8 9 | 10

0 1 2 3 4 5 6 7 8

sublist
index

9
2
e==6

mid === 4

v > e, recursively search the right sublist

221

Binary Search

» search for v =g

sublist
index

/**
* Searches a sorted list of integers for a given value using binary search.
*
* @param v the value to search for
* @param t the list to search
* @return true if vis in t, false otherwise
*/
public static boolean contains(int v, List<Integer> t) {
if (t.isEmpty()) {
return false;
}
int mid = t.size() / 2;
int e = t.get(mid);
if (e==v){
return true;
}
else if (v < e) {
return Recursion.contains(v, t.subList(0, mid));
}
else {
return Recursion.contains(v, t.subList(mid + 1, t.size()));

}
}

223

Binary Search

» what is the recurrence relation?
» what is the big-O complexity?

224

Revisiting Linked List

Recursive Objects

» an object that holds a reference to its own type is a
recursive object

» linked lists and trees are classic examples in computer
science of objects that can be implemented recursively

226

Singly Linked List

» a data structure made up of a sequence of nodes

» each node has
» some data

» afield that contains a reference (a link) to the next node in
the sequence

» suppose we have a linked list that holds characters; a
picture of our linked list would be:

node

—i—

a e > ‘X" o=—>| "r" o> "2 &> "s" @

data nul |
—> link

227

Singly Linked List

head node
—t—

"a' e > "X o=4—> "r* e=—>{ "a" @ | null

data
——> link

» the first node of the list is called the head node

228

Linked List

» each node can be thought of as the head of a smaller
list

At e——> X" @ > r* et—> O

head of

229

Linked List

» each node can be thought of as the head of a smaller
list

At e——> X" @ > r* et—> O

head of
["x", "r*, "a"]

230

Linked List

» each node can be thought of as the head of a smaller
list

head of
["re, "a’]

231

Linked List

» each node can be thought of as the head of a smaller
list

232

Linked List

» the recursive structure of the linked list suggests that
algorithms that operate on a linked list can be
implemented recursively

» e.g., getNode(int index) from Lab 5

233

/**
Returns the node at the given index.

<p>

NOTE: This method is extremely useful for implementing many of the methods
of this class, but students should try to use this method only once in each
method.

*
¥
¥
*
¥
*
*
* <p>
* NOTE: This method causes a privacy leak and would not normally be
* part of the public API; however, it is useful for testing purposes.
%k
%k
k3
%k
3
¥k
*k

@param index
the index of the node
@return the node at the given index
@throws IndexOutOfBoundsException
if index is less than © or greater than or equal the size of this
list
*/
public Node getNode(int index) {
this.checkIndex(index);
return LinkedIntList.getNodeImpl (this.head, index); // private static method

234

/**
* Returns the node located at the specified index in the
* list with specified head node.
*
* @param head the head node of a linked list
* @param index the index of the element
* @return the node located index elements from the specified node
*/
private static Node getNodeImpl(Node head, int index) {

* base case(s)?
e recursive case?
» precondition(s)?

235

/**
* Returns the node located at the specified index in the
* list with specified head node.
*
* @param head the head node of a linked list
* @param index the index of the element
* @return the node located index elements from the specified node
*/
private static Node getNodeImpl(Node head, int index) {
if (index == 0) {
return head;

}
return LinkedIntList.getNodeImpl (head.getNext(), index - 1);

236

Linked List

» recursive version of contains

237

/**
* Returns true if this list contains the specified element,
* and false otherwise.
*
* @param elem the element to search for
* @return true if this list contains the specified element,
* and false otherwise
*/
public boolean contains(int elem) {
if (this.size == 0) {
return false;

}

return LinkedIntList.contains(this.head, elem);

238

* Returns true if the linked list with the specified head node contains
* the specified element, and false otherwise.
*

* @param head the head node

* @param elem the element to search for

* @return true if the linked list with the specified head node contains
* the specified element, and false otherwise

*/

private static boolean contains(Node head, int elem) {

* base case(s)?
e recursive case?
e precondition(s)?

239

* Returns true if the linked list with the specified head node contains
* the specified element, and false otherwise.
*

* @param head the head node
* @param elem the element to search for
* @return true if the linked list with the specified head node contains
* the specified element, and false otherwise
*/
private static boolean contains(Node head, int elem) {
if (head.getData() == elem) {
return true;
}
if (head.getNext() == null) {
return false;

}

return LinkedIntList.contains(head.getNext(), elem);

240

	Recursion
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Printing n of Something
	A Different Solution
	Recursion
	Infinite Recursion
	Climbing a Flight of n Stairs
	Rabbits
	Fibonacci Numbers
	Recursive Methods & Return Values
	Recursive Methods & Return Values
	Recursive Methods & Return Values
	Slide Number 38
	Recursive Methods & Return Values
	Recursive Methods & Return Values
	Slide Number 41
	Slide Number 42
	countZeros Call Stack
	Fibonacci Call Tree
	Compute Powers of 10
	Slide Number 46
	Fibonacci Numbers
	Recursive Methods & Return Values
	Fibonacci Call Tree
	A Better Recursive Fibonacci
	Better Fibonacci Call Tree
	A Better Recursive Fibonacci
	Better Fibonacci Call Tree
	Compute Powers of 10
	Slide Number 55
	A Better Powers of 10
	Slide Number 57
	What happens during recursion
	What Happens During Recursion
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Recursion and collections
	Recursion and Collections
	The List method subList
	subList examples
	subList examples
	subList examples
	subList examples
	Recursively Search a List
	Recursively Search a List
	Slide Number 86
	Recursively Search a List
	Slide Number 88
	Recursion and Collections
	Recursively Move Smallest to Front
	Recursively Move Smallest to Front
	Recursively Move Smallest to Front
	Recursively Move Smallest to Front
	Recursively Move Smallest to Front
	Recursively Move Smallest to Front
	Recursively Move Smallest to Front
	Recursively Move Smallest to Front
	Sorting the List
	Sorting the List
	Sorting the List
	Sorting the List
	Selection Sort
	Jump It
	Jump It
	Jump It
	Jump It
	Jump It
	Jump It
	Jump It
	Jump It
	Jump It
	Slide Number 112
	Slide Number 113
	Solution 1
	Solution 1
	Solution 1
	Solution 1
	Solution 1
	Solution 1
	Solution 2
	Solution 2
	Solution 2
	Solution 2
	Solution 2
	Solution 2
	Solution 2
	Cycles
	Cycles
	Cycles
	No Solution
	Slide Number 131
	Recursion
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Base Cases
	Slide Number 142
	Recursion: Computational Complexity
	Recursively Move Smallest to Front
	Estimating complexity
	Elementary instructions
	Estimating complexity
	Recursively Move Smallest to Front
	Estimating complexity
	Recursively Move Smallest to Front
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Total number of operations
	Selection Sort
	Total number of operations
	Solving the recurrence relation
	Solving the recurrence relation
	Solving the recurrence relation
	Solving the recurrence relation
	Solving the recurrence relation
	Big-O notation
	Try to solve the recurrence relation
	Try to solve the recurrence relation
	Try to solve the recurrence relation
	Divide and Conquer
	Merge Sort
	Slide Number 176
	Merging Sorted Sub-lists
	Slide Number 178
	Merging Sorted Sub-lists
	Slide Number 180
	Merging Sorted Sub-lists
	Simplified Complexity Analysis
	Informal Analysis of Merge Sort
	Solving the Recurrence Relation
	Solving the Recurrence Relation
	Solving the Recurrence Relation
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Slide Number 197
	Proving correctness and terminaton
	Proving Correctness and Termination
	Proving Correctness
	printItToo
	Correctness of printItToo
	Proving Termination
	Termination of printItToo
	countZeros
	Correctness of countZeros
	Correctness of countZeros
	Termination of countZeros
	Selection Sort
	Proving Termination
	Slide Number 211
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Slide Number 223
	Binary Search
	Revisiting Linked List
	Recursive Objects
	Singly Linked List
	Singly Linked List
	Linked List
	Linked List
	Linked List
	Linked List
	Linked List
	Slide Number 234
	Slide Number 235
	Slide Number 236
	Linked List
	Slide Number 238
	Slide Number 239
	Slide Number 240

