York University

EECS 2011Z Winter 2018 - Problem Set 1 Solutions
 Instructor: James Elder

1. Prove whether each of the following is true or false. x and y are real variables.
1) $\forall x \exists y x \cdot y=5$
2) $\exists y \forall x x \cdot y=5$
3) $\forall x \exists y x \cdot y=0$
4) $\exists y \forall x x \cdot y=0$
5) $\exists a \forall x \exists y[x=a$ or $x \cdot y=5]$

- Answer:
(a) $\forall x \exists y x \cdot y=5$ is false. Let $x=0$. Then y must be $\frac{5}{0}$, which is impossible.
(b) $\exists y \forall x x \cdot y=5$ is false. Let y be an arbitrary real value and let $x=\frac{6}{y}$ if $y \neq 0$ and $x=0$ if $y=0$. Then $x \cdot y \neq 5$.
(c) $\forall x \exists y x \cdot y=0$ is true. Let x be an arbitrary real value and let $y=0$. Then $x \cdot y=0$.
(d) $\exists y \forall x x \cdot y=0$ is true. Let $y=0$ and let x be an arbitrary real value. Then $x \cdot y=0$.
(e) $\exists a \forall x \exists y[x=a$ or $x \cdot y=5]$ is true. Let $a=0$. Let x be an arbitrary real value. If $x=0$ then $[x=0$ or $x \cdot y=5]$ is true because of the left. If $x \neq 0$ then let $y=\frac{5}{x}$ and $[x=0$ or $x \cdot y=5]$ is true because of the right.

2. Asymptotic Running Times

True or False? All logarithms are base 2. No justification is necessary.
(a) $5 n^{2} \log n \in O\left(n^{2}\right)$

- Answer: False. It is a factor of $\log n$ too big.
(b) $4^{8 n} \in O\left(8^{4 n}\right)$
- Answer: False: $4^{8 n}=2^{16 n}$, but $8^{4 n}=2^{12 n}$.
(c) $2^{10 \log n}+100(\log n)^{11} \in O\left(n^{10}\right)$
- Answer: True: $2^{10 \log n}=n^{10}, 100(\log n)^{11} \in O\left(n^{10}\right)$.
(d) $2 n^{2} \log n+3 n^{2} \in \Theta\left(n^{3}\right)$
- Answer: False: $2 n^{2} \log n+3 n^{2} \in O\left(n^{3}\right)$, but $2 n^{2} \log n+3 n^{2} \notin \Omega\left(n^{3}\right)$.

3. Big-Oh Definition

Fill in the blanks:
$f(n) \in O(g(n))$ iff \qquad $c>0$, \qquad $n_{0}>0$, such that \qquad n \qquad $c g(n)$

- Answer:

$$
f(n) \in O(g(n)) \text { iff } \exists c>0, \exists n_{0}>0 \text {, such that } \underline{\forall} n \geq n_{0}, f(n) \leq c g(n)
$$

4. Order the following functions by increasing asymptotic growth rate:

$$
\begin{array}{ccc}
4 n \log n+2 n & 2^{10} & 2^{\log n} \\
3 n+100 \log n & 4 n & 2^{n} \\
n^{2}+10 n & n^{3} & n \log n
\end{array}
$$

- Answer:
(a) 2^{10}
(b) $2^{\log n}$
(c) $3 n+100 \log n$
(d) $4 n$
(e) $n \log n$
(f) $4 n \log n+2 n$
(g) $n^{2}+10 n$
(h) n^{3}
(i) 2^{n}

5. Prove that $n \log n-n$ is $\Omega(n)$.

- Answer:
$\log n \geq 2 \forall n \geq 4$. Thus $n \log n-n \geq n \forall n \geq 4 \rightarrow n \log n-n \in \Omega(n)$.

6. Prove that if $d(n)$ is $\mathrm{O}(f(n))$ and $e(n)$ is $\mathrm{O}(g(n))$, then the product $d(n) e(n)$ is $\mathrm{O}(f(n) g(n))$.

- Answer:
$d(n) \in \mathcal{O}(f(n)) \rightarrow \exists c_{1}, n_{1}>0: d(n) \leq c_{1} f(n) \forall n \geq n_{1}$.
Similarly,
$e(n) \in \mathcal{O}(g(n)) \rightarrow \exists c_{2}, n_{2}>0: e(n) \leq c_{2} f(n) \forall n \geq n_{2}$.
Thus, letting $c_{0}=c_{1} c_{2}$ and $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, we have
$d(n) e(n) \leq c_{0} f(n) g(n) \forall n \geq n_{0} \rightarrow d(n) e(n) \in \mathcal{O}(f(n) g(n))$.

7. An evil king has n bottles of wine, and a spy has just poisoned one of them. Unfortunately, they dont know which one it is. The poison is very deadly; just one drop diluted even a billion to one will still kill. Even so, it takes a full month for the poison to take effect. Design a scheme for determining exactly which one of the wine bottles was poisoned in just one months time while expending only $\mathrm{O}(\log n)$ royal tasters. State your scheme briefly, in English.

- Answer: Label each bottle from 0 to $n-1$, and consider each as a binary number consisting of $\lceil\log n\rceil$ bits. Now assemble $\lceil\log n\rceil$ royal goblets. Take a drop from each of the bottles whose lowest order bit is set and deposit in the first goblet. Then take a drop from each bottle whose 2 nd bit is set and deposit in the second goblet. Continue in similar fashion through the highest-order bit. Now hand each of the royal tasters one of the goblets and command them to drink. Note that there is now a 1:1 correspondence between bits and tasters. In a month, some of your tasters will drop dead. Set the corresponding bits to 1 , and all other bits to 0 . The resulting binary number identifies the poisoned bottle. Long live the king!

8. Asymptotic Running Times

True or False? All logarithms are base 2. No justification is necessary.
(a) $2^{n} \in \Omega\left(n^{3}\right)$

- Answer: True
(b) $3 n^{3}+17 n^{2} \in O\left(n^{3}\right)$
- Answer: True. For example, $3 n^{3}+17 n^{2} \leq 20 n^{3} \forall n \geq 1$.
(c) $5 n^{2} \log n \in O\left(n^{2}\right)$
- Answer: False. It is a factor of $\log n$ too big.

9. Show that n^{2} is $\Omega(n \log n)$.

- Answer: We seek a $c>0, n_{0}>0: \forall n \geq n_{0}, n^{2} \geq c n \log n \leftrightarrow n \geq c \log n$. Let $c=1$. Then we require that $n \geq \log n$. This is satisfied $\forall n \geq 1$. Thus n^{2} is $\Omega(n \log n)$.

