Loop Invariants and Binary Search

Learning Outcomes

- > From this lecture, you should be able to:
 - Use the loop invariant method to think about iterative algorithms.
 - Prove that the loop invariant is established.
 - Prove that the loop invariant is maintained in the 'typical' case.
 - Prove that the loop invariant is maintained at all boundary conditions.
 - □ Prove that progress is made in the 'typical' case
 - Prove that progress is guaranteed even near termination, so that the exit condition is always reached.
 - Prove that the loop invariant, when combined with the exit condition, produces the post-condition.
 - □ Trade off efficiency for clear, correct code.

Outline

- Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

Outline

Iterative Algorithms, Assertions and Proofs of Correctness

Binary Search: A Case Study

Assertions

An assertion is a statement about the state of the data at a specified point in your algorithm.

An assertion is not a task for the algorithm to perform.

You may think of it as a comment that is added for the benefit of the reader.

Loop Invariants

- Binary search can be implemented as an iterative algorithm (it could also be done recursively).
- Loop Invariant: An assertion about the current state useful for designing, analyzing and proving the correctness of iterative algorithms.

Other Examples of Assertions

- Preconditions: Any assumptions that must be true about the input instance.
- Postconditions: The statement of what must be true when the algorithm/program returns.
- Exit condition: The statement of what must be true to exit a loop.

Iterative Algorithms

Take one step at a time towards the final destination

loop take step end loop

Establishing Loop Invariant

From the Pre-Conditions on the input instance we must establish the loop invariant.

Maintain Loop Invariant

- Suppose that
- □ We start in a safe location (pre-condition)
- If we are in a safe location, we always step to another safe location (loop invariant)
- Can we be assured that the computation will always be in a safe location?

By what principle?

Ending The Algorithm

- Define Exit Condition
- Termination: With sufficient progress, the exit condition will be met.
- When we exit, we know
 exit condition is true
 loop invariant is true
 from these we must establish
 the post conditions.

Definition of Correctness
<PreCond> & <code> →<PostCond>

If the input meets the preconditions, then the output must meet the postconditions.

If the input does not meet the preconditions, then nothing is required.

Outline

Iterative Algorithms, Assertions and Proofs of Correctness

Binary Search: A Case Study

Define Problem: Binary Search

PreConditions

□ Key 25

Sorted List

3	5	6	13	18	21	21	25	36	43	49	51	53	60	72	74	83	88	91	95
---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

PostConditions

□ Find key in list (if there).

Define Loop Invariant

- Maintain a sublist.
- If the key is contained in the original list, then the key is contained in the sublist.

key 25

3	5	6	13	18	21	21	25	36	43	49	51	53	60	72	74	83	88	91	95
_	_	_	Sec. 1	2 Date 2	and the second	and the second	112200		and the second	10 A.	to part to	100 Mar 100	1000	1 2 5	1 3 m 212			_	

Define Step

- Cut sublist in half.
- > Determine which half the key would be in.
- Keep that half.

Define Step

- It is faster not to check if the middle element is the key.
- Simply continue.

Make Progress

> The size of the list becomes smaller.

Exit Condition

- If the key is contained in the original list,
 - then the key is contained in the sublist.
- Sublist contains one element.

- If element = key, return associated entry.
 - Otherwise return

false.

Running Time

The sublist is of size n, n/2, n/4, n/8,...,1 Each step O(1) time. Total = O(log n)

Running Time

- Binary search can interact poorly with the memory hierarchy (i.e. <u>caching</u>), because of its random-access nature.
- It is common to abandon binary searching for linear searching as soon as the size of the remaining span falls below a small value such as 8 or 16 or even more in recent computers.

BinarySearch(A[1..n], key)

<precondition>: A[1..n] is sorted in non-decreasing order

<postcondition>: If key is in A[1..n], algorithm returns its location p = 1, q = n

while q > p

< loop-invariant>: If key is in A[1..n], then key is in A[p..q]

$$mid = \left\lfloor \frac{p+q}{2} \right\rfloor$$

if key $\leq A[mid]$
 $q = mid$
else
 $p = mid + 1$
end
end
if key = $A[p]$
return(p)
else
return("Key not in list")
end

Simple, right?

- Although the concept is simple, binary search is notoriously easy to get wrong.
- Why is this?

> The basic idea behind binary search is easy to grasp.

- It is then easy to write pseudocode that works for a 'typical' case.
- Unfortunately, it is equally easy to write pseudocode that fails on the *boundary conditions*.

What condition will break the loop invariant?

if $key \leq A[mid]$ q = midelse p = mid + 1end if key < A[mid] q = mid - 1else p = midend If key < A[mid] q = midelse p = mid + 1end

OK

OK

Not OK!!

Shouldn't matter, right?

Select mid =
$$\left[\frac{p+q}{2}\right]$$

then key is in then key is in left half.

 $mid = \left\lfloor \frac{p+q}{2} \right\rfloor$ if key $\leq A[mid']$ q = midelse p = mid' + 1end

$$mid = \left\lceil \frac{p+q}{2} \right\rceil$$

if key < A[mid
q = mid -1
else
p = mid
end

OK

OK

Not OK!!

2

 $= mi \lambda + 1$

mid =

else

Getting it Right

- How many possible algorithms?
- How many correct algorithms?
- Probability of guessing correctly?

EECS 2011

Prof. J. Elder

RK

$$mid = \left\lfloor \frac{p+q}{2} \right\rfloor \quad \text{or mid} = \left\lceil \frac{p+q}{2} \right\rceil?$$

if key $\leq A[mid] \leftarrow \text{ or if } key < A[mid]?$
 $q = mid$
else
 $p = mid + 1$ or $q = mid - 1$
end
 $p = mid$
end

Alternative Algorithm: Less Efficient but More Clear

```
BinarySearch(A[1..n], key)
<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p = 1, q = n
while q \ge p
   < loop-invariant>: If key is in A[1..n], then key is in A[p..q]
   mid = \left| \frac{p+q}{2} \right|
   if key < A[mid]
       q = mid - 1
   else if key > A[mid]
       p = mid + 1
   else
                                      Still \Theta(\log n), but with slightly larger constant.
       return(mid)
   end
end
return("Key not in list")
```


Card Trick

Which column?

left EECS 2011

Prof. J. Elder

UNIVERSI

Last Updated: February 28, 2018

Selected column is placed in the middle

Relax Loop Invariant: I will remember the same about each column.

Which column?

UNIVERSIT UNIVERSIT right

Selected column is placed in the middle

Last Updated: February 28, 2018

Selected column is placed in the middle

Ternary Search

Loop Invariant: selected card in central subset of cards

Size of subset = $\left[n/3^{i}\right]$ Where n = total number of cards i = number of completed iterations

How many iterations are required to guarantee success?

Outline

- Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

Learning Outcomes

- > From this lecture, you should be able to:
 - Use the loop invariant method to think about iterative algorithms.
 - Prove that the loop invariant is established.
 - Prove that the loop invariant is maintained in the 'typical' case.
 - Prove that the loop invariant is maintained at all boundary conditions.
 - □ Prove that progress is made in the 'typical' case
 - Prove that progress is guaranteed even near termination, so that the exit condition is always reached.
 - Prove that the loop invariant, when combined with the exit condition, produces the post-condition.
 - □ Trade off efficiency for clear, correct code.

