
Sorting
EECS 2011

www.eecs.yorku.ca/course_archive/2017-18/W/2011MF/

1/95

www.eecs.yorku.ca/course_archive/2017-18/W/2011MF/

Overview

Review

Lower bound

Linear sorting

2/95

Sorting algorithms

Question

http://www.eecs.yorku.ca/course_archive/2017-18/W/

2011MF/sorting.html

3/95

http://www.eecs.yorku.ca/course_archive/2017-18/W/2011MF/sorting.html
http://www.eecs.yorku.ca/course_archive/2017-18/W/2011MF/sorting.html

Sorting algorithms

Answer

1 Merge sort

2 Heap sort

3 Selection sort

4 Quick sort

5 Bubble sort

6 Insertion sort

4/95

Big O, Big Omega and Big Theta

To capture the running time of algorithms, we use the following
notation. Let f , g ∈ N→ N.

f ∈ O(g) if

∃k > 0 : ∃m ∈ N : ∀n ≥ m : f (n) ≤ k g(n).

f is bounded from above by g

f ∈ Ω(g) if

∃k > 0 : ∃m ∈ N : ∀n ≥ m : k g(n) ≤ f (n).

f is bounded from below by g

f ∈ Θ(g) if

∃k` > 0 : ∃ku > 0 : ∃m ∈ N : ∀n ≥ m : k` g(n) ≤ f (n) ≤ ku g(n).

f is bounded from above and below by g

5/95

Sorting algorithms

selection sort Θ(n2)
insertion sort Θ(n2)
bubble sort Θ(n2)
merge sort Θ(n log n)
quick sort Θ(n2)
heap sort Θ(n log n)

6/95

Overview

Review

Lower bound

Linear sorting

7/95

How fast can we sort?

Question

How fast can we sort?

Answer

We can sort n elements in Θ(n log n).

Question

Can we sort any faster?

Question

Does there exist an algorithm that can sort n elements any faster?

8/95

How fast can we sort?

Question

How fast can we sort?

Answer

We can sort n elements in Θ(n log n).

Question

Can we sort any faster?

Question

Does there exist an algorithm that can sort n elements any faster?

8/95

How fast can we sort?

Question

How fast can we sort?

Answer

We can sort n elements in Θ(n log n).

Question

Can we sort any faster?

Question

Does there exist an algorithm that can sort n elements any faster?

8/95

How fast can we sort?

Question

How fast can we sort?

Answer

We can sort n elements in Θ(n log n).

Question

Can we sort any faster?

Question

Does there exist an algorithm that can sort n elements any faster?

8/95

Comparison sorts

Definition

A sorting algorithm is a comparison sort if the sorting is based on
comparisons between the elements (and not on the values of the
elements).

9/95

Comparison sorts

insertionSort(a) {

for (i = 1; i < a.length; i = i + 1) {

key = a[i];

j = i;

while (j > 0 && a[j - 1] > key) {

a[j] = a[j - 1];

j = j - 1;

}

a[j] = key;

}

}

Question

Is insertion sort a comparison sort?

Question

Yes.

10/95

Comparison sorts

insertionSort(a) {

for (i = 1; i < a.length; i = i + 1) {

key = a[i];

j = i;

while (j > 0 && a[j - 1] > key) {

a[j] = a[j - 1];

j = j - 1;

}

a[j] = key;

}

}

Question

Is insertion sort a comparison sort?

Question

Yes.

10/95

Comparison sorts

mergeSort(a, l, u) {

if (l + 1 < u) {

m = (l + u) / 2;

mergeSort(a, l, m);

mergeSort(a, m, u);

merge(a, l, m, u);

}

}

merge(a, l, m, u) {

i = l; j = m;

for (k = l; k < u; k = k + 1) {

if (i < m && (j >= u || a[i] <= a[j])) {

b[k] = a[i]; i = i + 1;

} else {

b[k] = a[j]; j = j + 1;

}

}

for (k = l, k < u; k = k + 1) {

a[k] = b[k];

}

}
11/95

Comparison sorts

Question

Is merge sort a comparison sort?

Question

Yes.

We will see examples of sorting algorithms that are not comparison
sorts later in this lecture.

12/95

Comparison sorts

Question

Is merge sort a comparison sort?

Question

Yes.

We will see examples of sorting algorithms that are not comparison
sorts later in this lecture.

12/95

Comparison sorts

Question

Is merge sort a comparison sort?

Question

Yes.

We will see examples of sorting algorithms that are not comparison
sorts later in this lecture.

12/95

Lower bound

Theorem

Any comparison sort must make Ω(n log n) comparisons in the
worst case.

Corollary

The worst case running time of any comparison sort is Ω(n log n).

Corollary

Merge sort and heap sort are asymptotically optimal comparison
sorts.

13/95

Lower bound

Theorem

Any comparison sort must make Ω(n log n) comparisons in the
worst case.

Corollary

The worst case running time of any comparison sort is Ω(n log n).

Corollary

Merge sort and heap sort are asymptotically optimal comparison
sorts.

13/95

Lower bound

Theorem

Any comparison sort must make Ω(n log n) comparisons in the
worst case.

Corollary

The worst case running time of any comparison sort is Ω(n log n).

Corollary

Merge sort and heap sort are asymptotically optimal comparison
sorts.

13/95

Proof of theorem

Without loss of generality, we may assume that all elements to be
sorted are different.

Question

Why can we assume that?

Answer

Assume that some elements are the same.

1, 6, 1, 6, 6

Add fractions to make them all different (in linear time).

1, 6, 1 1
2 , 6 1

3 , 6 2
3

Sort them.
1, 1 1

2 , 6, 6 1
3 , 6 2

3

Drop fractions (in linear time).

1, 1, 6, 6, 6

14/95

Proof of theorem

Without loss of generality, we may assume that all elements to be
sorted are different.

Question

Why can we assume that?

Answer

Assume that some elements are the same.

1, 6, 1, 6, 6

Add fractions to make them all different (in linear time).

1, 6, 1 1
2 , 6 1

3 , 6 2
3

Sort them.
1, 1 1

2 , 6, 6 1
3 , 6 2

3

Drop fractions (in linear time).

1, 1, 6, 6, 6
14/95

Comparisons

Given two elements ai and aj , we can compare then using

ai < aj

ai ≤ aj

ai = aj

ai ≥ aj

ai > aj

15/95

Comparisons

Question

If all elements are different, then it suffices to compare elements
using the comparator ≤. Why?

Answer

The other comparators <, ≥ and > can all be expressed in terms
of ≤ since

ai < aj iff ai ≤ aj

iff aj ≥ ai

iff aj > ai

Corollary

If all elements are different, then each comparison sort algorithm
can be rewritten so it only uses ≤.

16/95

Comparisons

Question

If all elements are different, then it suffices to compare elements
using the comparator ≤. Why?

Answer

The other comparators <, ≥ and > can all be expressed in terms
of ≤ since

ai < aj iff ai ≤ aj

iff aj ≥ ai

iff aj > ai

Corollary

If all elements are different, then each comparison sort algorithm
can be rewritten so it only uses ≤.

16/95

Comparisons

Question

If all elements are different, then it suffices to compare elements
using the comparator ≤. Why?

Answer

The other comparators <, ≥ and > can all be expressed in terms
of ≤ since

ai < aj iff ai ≤ aj

iff aj ≥ ai

iff aj > ai

Corollary

If all elements are different, then each comparison sort algorithm
can be rewritten so it only uses ≤.

16/95

Decision tree

Definition

Given the number of elements to be sorted, the decision tree for a
sorting algorithm is a binary tree containing the comparisons
performed by the sorting algorithm.

17/95

Decision tree

insertionSort(a) {

for (i = 1; i < a.length; i = i + 1) {

key = a[i];

j = i;

while (j > 0 && key <= a[j - 1]) { // use <=

a[j] = a[j - 1];

j = j - 1;

}

a[j] = key;

}

}

18/95

Decision tree

The decision tree for insertion sort for three elements can be
depicted as follows.

a1 ≤ a0

a2 ≤ a0 a2 ≤ a1

〈1, 0, 2〉a2 ≤ a1 a2 ≤ a0 〈0, 1, 2〉

〈2, 1, 0〉 〈1, 2, 0〉 〈2, 0, 1〉 〈0, 2, 1〉

19/95

Decision tree

selectionSort(a) {

for (i = 0; i < a.length; i = i + 1) {

min = i;

for (j = i + 1; j < a.length; j = j + 1) {

if (a[j] <= a[min]) { // use <=

min = j;

}

}

temp = a[i];

a[i] = a[min];

a[min] = temp;

}

}

20/95

Decision tree

Question

Draw the decision tree for selection sort for three elements.

21/95

Decision tree

Answer

a1 ≤ a0

a2 ≤ a1 a2 ≤ a0

a0 ≤ a1 a2 ≤ a0 a1 ≤ a0 a1 ≤ a2

〈2, 1, 0〉 〈1, 2, 0〉 〈1, 0, 2〉 〈0, 2, 1〉〈0, 1, 2〉〈2, 0, 1〉

22/95

Height of decision tree

Observation

The worst case running time of a sorting algorithm of n elements

≥

the maximal number of comparisons of a sorting algorithm of n
elements

=

the height of the decision tree for the sorting algorithm of n
elements.

23/95

Decision tree

Question

Given a decision tree for a sorting algorithm of n elements, what
are the leaves?

Answer

Permutations of 0, 1, . . . , n − 1.

Question

How many permutations of 0, 1, . . . , n − 1 are there?

Answer

n × (n − 1)× · · · 2× 1 = n!.

24/95

Decision tree

Question

Given a decision tree for a sorting algorithm of n elements, what
are the leaves?

Answer

Permutations of 0, 1, . . . , n − 1.

Question

How many permutations of 0, 1, . . . , n − 1 are there?

Answer

n × (n − 1)× · · · 2× 1 = n!.

24/95

Decision tree

Question

Given a decision tree for a sorting algorithm of n elements, what
are the leaves?

Answer

Permutations of 0, 1, . . . , n − 1.

Question

How many permutations of 0, 1, . . . , n − 1 are there?

Answer

n × (n − 1)× · · · 2× 1 = n!.

24/95

Decision tree

Question

Given a decision tree for a sorting algorithm of n elements, what
are the leaves?

Answer

Permutations of 0, 1, . . . , n − 1.

Question

How many permutations of 0, 1, . . . , n − 1 are there?

Answer

n × (n − 1)× · · · 2× 1 = n!.

24/95

Properties of decision trees

Property (Proposition 8.7 of the textbook)

A binary tree of height h has at most 2h leaves.

Property

A decision tree for a sorting algorithm of n elements has at least n!
leaves.

Question

Why does a decision tree for a sorting algorithm of n elements
have at least n! leaves?

Answer

Because the n elements can be ordered in any order and, hence,
any permutation is a possible outcome.

25/95

Properties of decision trees

Property (Proposition 8.7 of the textbook)

A binary tree of height h has at most 2h leaves.

Property

A decision tree for a sorting algorithm of n elements has at least n!
leaves.

Question

Why does a decision tree for a sorting algorithm of n elements
have at least n! leaves?

Answer

Because the n elements can be ordered in any order and, hence,
any permutation is a possible outcome.

25/95

Properties of decision trees

Property (Proposition 8.7 of the textbook)

A binary tree of height h has at most 2h leaves.

Property

A decision tree for a sorting algorithm of n elements has at least n!
leaves.

Question

Why does a decision tree for a sorting algorithm of n elements
have at least n! leaves?

Answer

Because the n elements can be ordered in any order and, hence,
any permutation is a possible outcome.

25/95

Properties of decision trees

Property (Proposition 8.7 of the textbook)

A binary tree of height h has at most 2h leaves.

Property

A decision tree for a sorting algorithm of n elements has at least n!
leaves.

Question

Why does a decision tree for a sorting algorithm of n elements
have at least n! leaves?

Answer

Because the n elements can be ordered in any order and, hence,
any permutation is a possible outcome.

25/95

Properties of decision trees

Property

A binary tree of height h has at most 2h leaves.

Property

A decision tree for a sorting algorithm of n elements has at least n!
leaves.

Conclusion

2h ≥ n! and, hence,

h ≥ log(n!) ≥ log
(

(n2)
n
2

)
= n

2 log(n2) ∈ Ω(n log n).

26/95

Lower bound

Observation

The worst case running time of a sorting algorithm of n elements

≥

the maximal number of comparisons of a sorting algorithm of n
elements

=

the height of the decision tree for the sorting algorithm of n
elements

≥
n
2 log(n2) ∈ Ω(n log n).

27/95

Lower bound

Theorem

Any comparison sort must make Ω(n log n) comparisons in the
worst case.

Corollary

The worst case running time of any comparison sort is Ω(n log n).

Corollary

Merge sort and heap sort are asymptotically optimal comparison
sorts.

28/95

Overview

Review

Lower bound

Linear sorting

29/95

But first...

... a break.

30/95

Overview

Review

Lower bound

Linear sorting

Bucket sort
Counting sort
Radix sort

31/95

Linear time sorting

Theorem

The worst case running time of any comparison sort is Ω(n log n).

Question

Can we do better if use information other than comparison of
elements?

Answer

Yes.

32/95

Linear time sorting

Theorem

The worst case running time of any comparison sort is Ω(n log n).

Question

Can we do better if use information other than comparison of
elements?

Answer

Yes.

32/95

Overview

Review

Lower bound

Linear sorting

Bucket sort
Counting sort
Radix sort

33/95

Bucket sort

Assumption

All elements come from the interval [0,N − 1] for some N ≥ 2.

Main idea

1. Create N buckets.

2. Place each element in “its” bucket.

3. Concatenate the buckets.

34/95

Bucket sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

1. Create five buckets.

0 1 2 3 4

35/95

Bucket sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

2. Place each element in “its” bucket.

0 1 2 3 4

36/95

Bucket sort

Elements to be sorted: 4, 4, 1, 0, 2

2. Place each element in “its” bucket.

0 1 2 3 4

2

37/95

Bucket sort

Elements to be sorted: 4, 1, 0, 2

2. Place each element in “its” bucket.

0 1 2 3 4

2 4

38/95

Bucket sort

Elements to be sorted: 1, 0, 2

2. Place each element in “its” bucket.

0 1 2 3 4

2 4

4

39/95

Bucket sort

Elements to be sorted: 0, 2

2. Place each element in “its” bucket.

0 1 2 3 4

2 4

4

1

40/95

Bucket sort

Elements to be sorted: 2

2. Place each element in “its” bucket.

0 1 2 3 4

2 4

4

10

41/95

Bucket sort

Elements to be sorted:

2. Place each element in “its” bucket.

0 1 2 3 4

2 4

4

10

2

42/95

Bucket sort

3. Concatenate the buckets.

0 1 2 3 4

2 4

4

10

2

Sorted elements:

43/95

Bucket sort

3. Concatenate the buckets.

0 1 2 3 4

2 4

4

1

2

Sorted elements: 0

44/95

Bucket sort

3. Concatenate the buckets.

0 1 2 3 4

2 4

42

Sorted elements: 0, 1

45/95

Bucket sort

3. Concatenate the buckets.

0 1 2 3 4

2 4

4

Sorted elements: 0, 1, 2

46/95

Bucket sort

3. Concatenate the buckets.

0 1 2 3 4

4

4

Sorted elements: 0, 1, 2, 2

47/95

Bucket sort

3. Concatenate the buckets.

0 1 2 3 4

4

Sorted elements: 0, 1, 2, 2, 4

48/95

Bucket sort

3. Concatenate the buckets.

0 1 2 3 4

Sorted elements: 0, 1, 2, 2, 4, 4

49/95

Bucket sort

Question

How can we represent the buckets?

Answer

As an array of lists.

50/95

Bucket sort

Question

How can we represent the buckets?

Answer

As an array of lists.

50/95

Bucket sort

bucketSort(a, N) {

for (i = 0; i < N; i = i + 1) {

b[i] = empty list;

}

for (i = 0; i < a.length; i = i + 1) {

b[a[i]].add(a[i]);

}

j = 0;

for (i = 0; i < N; i = i + 1) {

while (!b[i].isEmpty()) {

a[j] = b[i].remove();

j++;

}

}

}

51/95

Bucket sort

Question

Express the worst case running time of bucket sort in terms of n
and N.

Answer

O(n + N).

Note

If N ∈ O(n) then the worst case running time of bucket sort is
O(n).

52/95

Bucket sort

Question

Express the worst case running time of bucket sort in terms of n
and N.

Answer

O(n + N).

Note

If N ∈ O(n) then the worst case running time of bucket sort is
O(n).

52/95

Bucket sort

Question

Express the worst case running time of bucket sort in terms of n
and N.

Answer

O(n + N).

Note

If N ∈ O(n) then the worst case running time of bucket sort is
O(n).

52/95

Overview

Review

Lower bound

Linear sorting

Bucket sort
Counting sort
Radix sort

53/95

Counting sort

Assumption

All elements come from the interval [0,N − 1] for some N ≥ 2.

Main idea

1. Create a frequency table with N entries.

2. Keep track of the frequency of each element.

3. Compute the number of elements smaller than or equal to a
given element.

4. Place each element in “right” place.

54/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

1. Create a frequency table with five entries.

0 1 2 3 4

0 0 0 0 0

55/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

2. Keep track of the frequency of each element.

0 1 2 3 4

0 0 0 0 0

56/95

Counting sort

Elements to be sorted: 4, 4, 1, 0, 2

2. Keep track of the frequency of each element.

0 1 2 3 4

0 0 1 0 0

57/95

Counting sort

Elements to be sorted: 4, 1, 0, 2

2. Keep track of the frequency of each element.

0 1 2 3 4

0 0 1 0 1

58/95

Counting sort

Elements to be sorted: 1, 0, 2

2. Keep track of the frequency of each element.

0 1 2 3 4

0 0 1 0 2

59/95

Counting sort

Elements to be sorted: 0, 2

2. Keep track of the frequency of each element.

0 1 2 3 4

0 1 1 0 2

60/95

Counting sort

Elements to be sorted: 2

2. Keep track of the frequency of each element.

0 1 2 3 4

1 1 1 0 2

61/95

Counting sort

Elements to be sorted:

2. Keep track of the frequency of each element.

0 1 2 3 4

1 1 2 0 2

62/95

Counting sort

3. Compute the number of elements smaller than or equal to a
given element.

0 1 2 3 4

1 1 2 0 2

0 0 0 0 0

63/95

Counting sort

3. Compute the number of elements smaller than or equal to a
given element.

0 1 2 3 4

1 1 2 0 2

1 0 0 0 0

64/95

Counting sort

3. Compute the number of elements smaller than or equal to a
given element.

0 1 2 3 4

1 1 2 0 2

1 2 0 0 0

65/95

Counting sort

3. Compute the number of elements smaller than or equal to a
given element.

0 1 2 3 4

1 1 2 0 2

1 2 4 0 0

66/95

Counting sort

3. Compute the number of elements smaller than or equal to a
given element.

0 1 2 3 4

1 1 2 0 2

1 2 4 4 0

67/95

Counting sort

3. Compute the number of elements smaller than or equal to a
given element.

0 1 2 3 4

1 1 2 0 2

1 2 4 4 6

68/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

1 2 4 4 6

Sorted elements:

69/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

1 2 4 4 6

Sorted elements:

70/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

1 2 4 4 6

Sorted elements:

71/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

1 2 4 4 6

Sorted elements:

2

72/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

1 2 3 4 6

Sorted elements:

2

73/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

1 2 3 4 6

Sorted elements:

2

74/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

1 2 3 4 6

Sorted elements:

2

75/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

1 2 3 4 6

Sorted elements:

0 2

76/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 2 3 4 6

Sorted elements:

0 2

77/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 2 3 4 6

Sorted elements:

0 2

78/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 2 3 4 6

Sorted elements:

0 2

79/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 2 3 4 6

Sorted elements:

0 1 2

80/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 6

Sorted elements:

0 1 2

81/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 6

Sorted elements:

0 1 2

82/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 6

Sorted elements:

0 1 2

83/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 6

Sorted elements:

0 1 2 4

84/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 5

Sorted elements:

0 1 2 4

85/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 5

Sorted elements:

0 1 2 4

86/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 5

Sorted elements:

0 1 2 4

87/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 5

Sorted elements:

0 1 2 4 4

88/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 4

Sorted elements:

0 1 2 4 4

89/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 4

Sorted elements:

0 1 2 4 4

90/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 4

Sorted elements:

0 1 2 4 4

91/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 3 4 4

Sorted elements:

0 1 2 2 4 4

92/95

Counting sort

Elements to be sorted: 2, 4, 4, 1, 0, 2

4. Place each element in “right” place.

0 1 2 3 4

1 1 2 0 2

0 1 2 4 4

Sorted elements:

0 1 2 2 4 4

93/95

Counting sort

countingSort(a, N) {

for (i = 0; i < N; i = i + 1) {

f[i] = 0;;

}

for (i = 0; i < a.length; i = i + 1) {

f[a[i]] = f[a[i]] + 1;

}

for (i = 1; i < N; i = i + 1) {

f[i] = f[i-1] + f[i];

}

for (i = a.length - 1; i >= 0; i = i - 1) {

b[f[a[i]] = a[i];

f[a[i]] = f[a[i]] - 1;

}

for (i = 0; i < a.length; i++) {

a[i] = b[i];

}

} 94/95

Counting sort

Question

Express the worst case running time of bucket sort in terms of n
and N.

Answer

O(n + N).

Note

If N ∈ O(n) then the worst case running time of bucket sort is
O(n).

95/95

Counting sort

Question

Express the worst case running time of bucket sort in terms of n
and N.

Answer

O(n + N).

Note

If N ∈ O(n) then the worst case running time of bucket sort is
O(n).

95/95

Counting sort

Question

Express the worst case running time of bucket sort in terms of n
and N.

Answer

O(n + N).

Note

If N ∈ O(n) then the worst case running time of bucket sort is
O(n).

95/95

Radix Sort
Input:

• An array of N numbers.
• Each number contains d digits.
• Each digit between [0…k-1]

Output:
• Sorted numbers.

Each digit (column) can be sorted (e.g., using
Counting Sort).

Which digit to start from?

RadixSort

344
125
333
134
224
334
143
225
325
243

Sort by which
digit first?

The most
significant.

125
134
143
224
225
243
344
333
334
325

Sort by which
digit Second?

The next most
significant.

125
224
225
325
134
333
334
143
243
344

All meaning in first sort lost.

Radix Sort
1. Start from the least significant digit, sort

2. Sort by the next least significant digit

3. Are the last 2 columns sorted?

4. Generalize: after j iterations, the last j columns
are sorted

5. Loop invariant: Before iteration i, the keys
have been correctly stable-sorted with
respect to the i-1 least-significant digits.

Radix sort

Radix-Sort(A,d)
• for i←1 to d
• do use a stable sort to sort A on digit i

Analysis:
Given n d-digit numbers where each digit takes on

up to k values, Radix-Sort sorts these numbers
correctly in Θ(d(n+k)) time.

Radix sort – example (binary)

Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

	lecture-part2.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Bucket Sort - Illustration
	Bucket Sort - Pseudocode
	Bucket Sort – Example
	Slide Number 7
	Slide Number 8
	First step: Counting Sort
	Counting Sort
	Counting Sort
	Counting Sort - pseudocode
	CountingSort
	CountingSort
	Counting Sort - analysis
	Stability
	Radix Sort
	RadixSort
	Radix Sort
	Radix sort
	Radix sort – example
	Radix sort – example (binary)

