
EECS 2011 M:
Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

Some slides are adapted from the authors’ slides

S. Datta (York Univ.) EECS 2011 W18 1 / 34

http://www.eecs.yorku.ca/course/2011M


Course policies

Administrivia

Lectures: Tue 6-9 pm (CLH C)

Midterm (30%): in-class

Final (50%): Scheduled by the registrar’s office

Homework (20%): 4 sets, mostly programming

Office hours: Mon-Wed 3-4 pm or by appointment
at LAS 3043.

S. Datta (York Univ.) EECS 2011 W18 2 / 34



Course policies

Administrivia - 2

Textbook: Goodrich, M.T., Tamassia R. and
Goldwasser, M.H. (2014). Data Structures and
Algorithms in Java (6th ed.) John Wiley & Sons.

Getting instant feedback from you:
I would like to use iClicker.
Student manual: Click here

S. Datta (York Univ.) EECS 2011 W18 3 / 34

http://lts.info.yorku.ca/files/2017/07/iClicker-Reef-Student-Quick-Start.pdf


Course policies

Homework, Grades

We will be paperless, except midterm/final
examination.

All course information online – Moodle, partly
mirrored in public course webpage

All returned work will be in electronic form
(including tests).

S. Datta (York Univ.) EECS 2011 W18 4 / 34



Course Objectives

Why data structures?

S. Datta (York Univ.) EECS 2011 W18 5 / 34



Course Objectives

Why data structures?

1021/2: Simple Java programming

2030: Object-oriented design, recursion, some
simple algorithms

2011:
Organize data to answer queries efficiently

Maintain relationships between data items

Priority queues, trees, heaps, sets

S. Datta (York Univ.) EECS 2011 W18 6 / 34



Course Objectives

An example: Representing a Set

Q: What operations do we need to support?
A: Addition, Deletion, Existence Query

1 An unordered array
Insertion - constant time

Deletion - linear time

Existence - linear time
2 A sorted array

Insertion - linear time

Deletion - linear time

Existence - logarithmic time

S. Datta (York Univ.) EECS 2011 W18 7 / 34



Course Objectives

Representing a Set: Other ideas

1 A linked list

2 A binary search tree

3 A sorted array

4 Advanced ideas: Hashing, Union-Find with path
compression

S. Datta (York Univ.) EECS 2011 W18 8 / 34



Course Objectives

Example 2: A Priority Queue

Q: What operations do we need to support?
A: Insertion, Extract minimum, Change priority

1 A sorted array
Insertion - linear time

Extract min - constant time

Change priority - linear time
2 A linked list

Insertion - linear time

Extract min - constant time

Change priority - linear time

3 Advanced idea: A heap

S. Datta (York Univ.) EECS 2011 W18 9 / 34



Course Objectives

Two levels of Abstraction

Functional description, or programmer’s abstract
view

Implementation: Details hidden from the user

S. Datta (York Univ.) EECS 2011 W18 10 / 34



Course Objectives

Course Objectives

We will focus on two major goals:

Fundamental data structures commonly used in the
design of algorithms

know the classical data structures
master the use of abstraction, specification and program
construction using modules
learn the basics of algorithm design for solving problems

Precise and rigorous reasoning about programs
Correctness proofs with loop invariants
Running time analyses using asymptotic notation

S. Datta (York Univ.) EECS 2011 W18 11 / 34



Course Objectives

Secondary Objective: abstracting out the
algorithmic problem(s)

Extract the algorithmic problem and ignore the
“irrelevant” details

Focuses your thinking, more efficient problem
solving

Programming contest problems teach this skill more
effectively than many exercises in algorithms texts.

S. Datta (York Univ.) EECS 2011 W18 12 / 34



Course Objectives

My expectations

You will attend classes and labs/tutorials

Want to solidify your programming and your
algorithmic foundations

Ask for help when needed

Follow academic honesty regulations (see the class
webpage for more details on policies).

Let me know when people are not understanding a topic.
I will also run anonymous iClicker polls regularly

S. Datta (York Univ.) EECS 2011 W18 13 / 34



Course Objectives

To do well in this class

Read the book, not just the slides

Practice, practice, practice ...

Ask for help early

Follow along in class rather than take notes

Keep up with the class. Ask questions in class or
outside class

Be timely – HW submitted late will not be graded

S. Datta (York Univ.) EECS 2011 W18 14 / 34



The Big Picture

The Big Picture

Programs = Data Structures + Algorithms

Object-oriented programming (OOP): principled
way of building programs

Software Design: Building complex software using a
design paradigm

S. Datta (York Univ.) EECS 2011 W18 15 / 34



The Big Picture

The Big Picture - 2

OOP with simple data: Objects consist of
Data items

Algorithms to construct, access and modify these items.

OOP with complex data: Objects consist of
Data structures

Algorithms to construct, access and modify these
structures.

S. Datta (York Univ.) EECS 2011 W18 16 / 34



The Big Picture

Data Structures We Will Study

Linear Data Structures: Arrays, Linked Lists,
Stacks, Queues, Priority Queues

Non-Linear Data Structures: Trees, Heaps, Hash
Tables, Search Trees

Graphs: Undirected Graphs, Directed Graphs,
Directed Acyclic Graphs

S. Datta (York Univ.) EECS 2011 W18 17 / 34



Review of fundamentals

Review of fundamentals

Software Design

Object-oriented programming (OOP)

Java

S. Datta (York Univ.) EECS 2011 W18 18 / 34



Review of fundamentals

Goals of Software Design

Software must be:

Correct: Works correctly for all expected inputs

Efficient

Easy to read, understand and maintain

Robust: Capable of handling unexpected inputs

Reusable/Adaptable/Flexible

Portable

S. Datta (York Univ.) EECS 2011 W18 19 / 34



Review of fundamentals

Goals of OOP

Robustness: handling unexpected inputs

Adaptability: being able to evolve over time in
response to changing environments

Reusability: use as a component of different
applications

S. Datta (York Univ.) EECS 2011 W18 20 / 34



Review of fundamentals

OOP Design Principles

Abstraction

Encapsulation

Modularity

Hierarchical Organization

All of these are meant to manage complexity

S. Datta (York Univ.) EECS 2011 W18 21 / 34



Review of fundamentals

Encapsulation

Information hiding.

objects reveal only what other objects need to see.

Internal details are kept private.

This allows the programmer to implement the
object as they wish, as long as the requirements of
the abstract interface are satisfied.

S. Datta (York Univ.) EECS 2011 W18 22 / 34



Review of fundamentals

Modularity

Complex software systems are hard to
conceptualize, design and maintain.

This is greatly facilitated by breaking the system up
into distinct modules.

Each module has a well-specified role.

Modules communicate through well-specified
interfaces.

The primary unit for a module in Java is a package.

S. Datta (York Univ.) EECS 2011 W18 23 / 34



Review of fundamentals

Hierarchical Design

Hierarchical class definitions allow efficient re-use of
common software over different contexts.

S. Datta (York Univ.) EECS 2011 W18 24 / 34



Review of fundamentals

Abstract Data Types

Exemplar of OOP design principles

Abstraction is to distill a system to its most
fundamental parts.

Applying the abstraction paradigm to the design of
data structures gives rise to abstract data types
(ADTs).

S. Datta (York Univ.) EECS 2011 W18 25 / 34



Review of fundamentals

Abstract Data Types

An ADT is a model of a data structure that
specifies

the type of data stored,

the operations supported on them, and

the types of parameters of the operations.

The collective set of behaviors supported by an
ADT is its public interface

An ADT does NOT specify how it is implemented

S. Datta (York Univ.) EECS 2011 W18 26 / 34



OOP in Java

Abstraction in Java

A class serves as the primary means for abstraction
in OOP.
In Java, every variable is either a base type or is a
reference to an object which is an instance of some
class.
Each class presents to the outside world a concise
and consistent view of the objects that are its
instances, without revealing too much unnecessary
detail or giving others access to the inner workings
of the objects.
The class definition specifies its members (instance
variables and methods)

S. Datta (York Univ.) EECS 2011 W18 27 / 34



OOP in Java

Inheritance

A mechanism for modular and hierarchical organization.

A (child) subclass extends a (parent) superclass.

A subclass inherits (non-constructor) members of its
superclass.

A subclass can extend the superclass by providing
brand-new data members and methods (besides
those inherited from the superclass, other than
constructors).

Java (unlike C++) is single inheritance

S. Datta (York Univ.) EECS 2011 W18 28 / 34



OOP in Java

Interfaces

The main structural element in Java that enforces
an application programming interface (API) is an
interface.

An interface contains constants and abstract
methods with no bodies; all public by default.

It has no constructors and cannot be directly
instantiated.

A class that implements an interface, must
implement all of the methods declared in the
interface (no inheritance) to compile.

S. Datta (York Univ.) EECS 2011 W18 29 / 34



OOP in Java

Abstract Classes

An abstract class also cannot be instantiated, but it
can define one or more methods that all
implementations of the abstraction will have.

Their sole purpose is to be extended.

A class must be a subclass of an abstract class to
extend it and implement all its abstract methods (or
else be abstract itself).

S. Datta (York Univ.) EECS 2011 W18 30 / 34



OOP in Java

Interfaces vs Abstract Classes

A class that implements an interface, must
implement all of the methods declared in the
interface

As a result, unlike abstract classes, interfaces are
non-adaptable: you cannot add new methods to it
without breaking its contract.

However, interfaces offer great flexibility for its
implementers: a class can implement any number of
interfaces, regardless of where that class is in the
class hierarchy.

S. Datta (York Univ.) EECS 2011 W18 31 / 34



OOP in Java

Polymorphism

Regardless of where it is in the inheritance tree, a
class can implement several interfaces.

This is multi-role playing (aka, mixin), not multiple
inheritance.

S. Datta (York Univ.) EECS 2011 W18 32 / 34



OOP in Java

Polymorphism

Regardless of where it is in the inheritance tree, a
class can implement several interfaces.

This is multi-role playing (aka, mixin), not multiple
inheritance.

S. Datta (York Univ.) EECS 2011 W18 33 / 34



OOP in Java

To be continued...

We will continue with

polymorphism,

overloading,

overriding,

casting,

generics, and

exceptions

in the next lecture.

S. Datta (York Univ.) EECS 2011 W18 34 / 34


	Course policies
	Course Objectives
	The Big Picture
	Review of fundamentals
	OOP in Java

