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Introduction to Algorithm Analysis

Objectives

Review how to describe algorithms

Learn to reason about the running times of
algorithms, and compare their efficiency

To be able to compare algorithms and choose
appropriate ones

Note: Some slides in this presentation have been
adapted from the authors’ slides.
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Describing Algorithms

Algorithms and Pseudo-code

[Webster] Algorithm: a procedure for solving a
mathematical problem in a finite number of steps ...
Pseudo-code

Use English rather than a real programming
language

More high-level than code

Hides many details

Preferred notation for describing algorithms
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Describing Algorithms

Pseudo-code - 2

Control flow
if ... then ... [else . . . ]

while ... do ...

repeat ... until ...

for ... do ...
Indentation replaces braces

Method declaration
Algorithm method (arg [, arg ...])
Input ...
Output ...
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Describing Algorithms

Pseudo-code - 3

Method call: method (arg [, arg. . . ])

Return value: return expression

Expressions:
Assignment: ← item Equality testing: =

Superscripts and other mathematical formatting allowed
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Analysis of Algorithms - Background

Reasoning about Algorithms

I/O specs: Needed for correctness proofs,
performance analysis. E.g. for sorting:
INPUT: A[1..n] - an array of integers
OUTPUT: a permutation B of A such that
B[1] ≤ B[2] ≤ . . . ≤ B[n]

Correctness: The algorithm satisfies the output
specs for EVERY valid input – Later

Analysis: Compute the performance of the
algorithm, e.g., in terms of running time – next
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Analysis of Algorithms - Background

Analysis of Algorithms

Measures of efficiency:
Running time

Space used

others, e.g., number of disk accesses, network accesses,...

Efficiency as a function of input size (NOT value!)
Number of data elements (numbers, points)

Number of bits in an input number

Examples: Find the factors of a number n, Determine if
an integer n is prime

Machine Model
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Analysis of Algorithms - Background

Machine Model: Specific or Generic?

Modern computers are incredibly complex.

Modeling the memory hierarchy and network
connectivity generically is very difficult

All modern computers are “similar” in that they
provide the same basic operations.

Most general-purpose processors today have at most
eight processors or “cores”. The vast majority have
one or two or four. GPU’s have hundreds or
thousands.

Note: Need a generic model that models (approximately)
all machines
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Analysis of Algorithms - Background

A Standardized, Abstract Machine Model

Random Access Machine (RAM) assumptions:

Instructions (each taking constant time):
Arithmetic (add, subtract, multiply, etc.)

Data movement (assign)

Control (branch, subroutine call, return)

Comparison

Data types – integers, characters, and floats

Note:
Ignores memory hierarchy, network!
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Analysis of Algorithms - Background

Asymptotic Analysis

Instructions (each taking constant time):
Arithmetic (add, subtract, multiply, etc.)

Data movement (assign)

Control (branch, subroutine call, return)

Comparison

Data types – integers, characters, and floats
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Analysis of Algorithms - Background

Asymptotic Analysis

Cannot capture exact running times on a specific
machine

Captures the nature of growth of running times,
NOT actual values

Want to make statements like, “the running time of
an algorithm grows linearly with input size”.

Very useful for studying the behavior of algorithms
for LARGE inputs
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Analysis of Algorithms - Background

An Example: Find the max of n numbers

Input: A[1..n] - an array of integers
Output: an element m of A such that A[j ] ≤ m,
1 ≤ j ≤ n

FindMax(A)
1 n← length(A)
2 max ← A[1]
3 for j ← 2 to n
4 do if max < A[j ]
5 then max ← A[j ]
6 return max
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Analysis of Algorithms - Background

Find the max of n numbers: Java
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Analysis of Algorithms - Background

Analysis of FindMax

FindMax(A)
1 n← length(A)
2 max ← A[1]
3 for j ← 2 to n
4 do if max < A[j ]
5 then max ← A[j ]
6 return max

line Cost Times
1 c1 1
2 c2 1
3 c3 n
4 c4 n − 1
5 c5 0 ≤ k ≤ n − 1
6 c6 1

Best Case: k = 0
Worst Case: k = n − 1
Average Case: ?
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Analysis of Algorithms - Background

Best/Worst/Average Case Analysis
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Analysis of Algorithms - Background

Best/Worst/Average Case Analysis - 2

The running time of an algorithm typically grows with
the input size.

Best Case: Not very informative

Average Case: Often very useful, but hard to
determine

Worst Case: Easier to analyze. Crucial in
applications like

Games
Finance
Robotics
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Analysis of Algorithms - Background

Experimental Analysis of Running Time
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Analysis of Algorithms - Background

Experimental Analysis of Running Time -
Issues

Need an (efficient) implementation

Get running time as a function of the input size n

Takes into account all possible inputs

Only valid on an abstract model of the
hardware/software environment
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Analysis of Algorithms - Background

Theoretical Analysis of Running Time

Need description/pseudo-code, not implementation

Hard to know if the inputs used are representative

To compare two algorithms, the same hardware and
software environments must be used
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Some Math Review

Some Math Review
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Some Math Review

Seven Important Functions

Seven functions that appear frequently in algorithm
analysis:

Constant ≈ 1

Logarithmic ≈ log n

Linear ≈ n

N-Log-N ≈ n log n

Quadratic ≈ n2

Cubic ≈ n3

Exponential ≈ 2n

S. Datta (York Univ.) EECS 2011 W18 21 / 47



Some Math Review

Seven Important Functions - 2
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Some Math Review

Relevant Math Facts - Exponents

a(b+c) = abac

abc = (ab)c

ab/ac = ab−c

b = aloga b

bc = ac loga b
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Some Math Review

Relevant Math Facts - Logarithms

logb(xy) = logb x + logb y

log b(x/y) = logb x − logb y

logb x
a = a logb x

logb a = logx a/ logx b

Also, note the difference between log log n and
(log n)2 = log2 n.
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Some Math Review

Relevant Math Facts - Sums of Series

The sum of the first n integers is
1 + 2 + . . . + n = n(n + 1)/2
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Analysis of Algorithms

Analysis of FindMax - Continued

FindMax(A)
1 n← length(A)
2 max ← A[1]
3 for j ← 2 to n
4 do if max < A[j ]
5 then max ← A[j ]
6 return max

line Cost Times
1 c1 1
2 c2 1
3 c3 n
4 c4 n − 1
5 c5 0 ≤ k ≤ n − 1
6 c6 1

Running time (worst-case):
c1 + c2 + c6 − c4 − c5 + (c3 + c4 + c5)n
Running time (best-case): c1 + c2 + c6 − c4 + (c3 + c4)n
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Analysis of Algorithms

Simplifying Running Times

Note that the worst-case time of
c1 + c2 + c6 − c4 − c5 + (c3 + c4 + c5)n is

Complex

Not useful as the ci ’s are machine dependent

A simpler expression: C + Dn [still complex].

Want to say this is Linear, i.e., ≈ n

Q: How/why can we throw away the coefficient D and
the lower order term C?
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Analysis of Algorithms

Simplifying Running Times - Rationale

Discarding lower order terms: We are interested in
large n – cleaner theory, usually realistic.

Discarding coefficients (multiplicative constants):
the coefficients are machine dependent

Caveat: remember these assumptions when interpreting
results! We will not get:

Exact run times

Comparison for small instances

Small differences in performance
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Analysis of Algorithms

Asymptotic Analysis

Goal: to simplify analysis of running time by getting rid
of “details”, which may be affected by specific
implementation and hardware

So 3n2 − 5n + 6 ≈ n2

Capturing the essential information: how the
running time of an algorithm increases with the size
of the input in the limit

Asymptotically more efficient algorithms are best for
all but small inputs
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Analysis of Algorithms

Asymptotic Notation: Big-Oh

Suppose f (n) and g(n) are functions over non-negative
integers
The “big-Oh” Notation O() is defined as
f (n) ∈ O(g(n)), if there exists real number constants
c > 0 and n0 > 0, satisfying f (n) ≤ cg(n) for all natural
numbers n ≥ n0

Example:

2n + 10 ∈ O(n)

3n2 − 5n + 6 ∈ O(n2)

2n + 10 ∈ O(n3)
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Analysis of Algorithms

Big-Oh: Intuition

We choose g(n) to be a very simple function

Image: https://xlinux.nist.gov/dads/Images/bigOGraph.gif
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Analysis of Algorithms

Asymptotic Notation: Big-Omega

The “big-Oh” Notation Ω() is defined as
f (n) ∈ Ω(g(n)), if there exists real number constants
c > 0 and n0 > 0, satisfying f (n) ≥ cg(n) for all natural
numbers n ≥ n0

Example:

2n + 10 ∈ Ω(n)

3n2 − 5n + 6 ∈ Ω(n2)

3n2 − 5n + 6 ∈ Ω(n)

S. Datta (York Univ.) EECS 2011 W18 32 / 47



Analysis of Algorithms

Asymptotic Notation: Big-Theta

f (n) ∈ Θ(g(n)) if

f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

there exists real number constants c1 > 0, c2 > 0
and n0 > 0, satisfying c2g(n) ≥ f (n) ≥ c1g(n) for
all natural numbers n ≥ n0

Example:

2n + 10 ∈ Θ(n)

3n2 − 5n + 6 ∈ Θ(n2)

3n2 − 5n + 6 6∈ Ω(n), 2n + 10 6∈ Θ(n2)

S. Datta (York Univ.) EECS 2011 W18 33 / 47



Analysis of Algorithms

Big-Theta: Intuition

Again, we choose g(n) to be a very simple function

Image: https://xlinux.nist.gov/dads/Images/thetaGraph.gif
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Analysis of Algorithms

Common Abuses of Notation

Many, many abuses of asymptotic notation in EECS
literature.

f (n) = O(g(n)) instead of f (n) ∈ O(g(n))

O(g(n)) instead of Θ(g(n))

Common “colloquial” uses:

Θ(1) – constant.

nΘ(1) – polynomial

2Θ(n) – exponential
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Analysis of Algorithms

Common Mistakes

nΘ(1) 6∈ Θ(n1)

2Θ(n) 6∈ Θ(2n)
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Analysis of Algorithms

Important Facts

Logarithmic << Polynomial: log1000 n << n0.001 For
sufficiently large n

Linear << Quadratic: 10000n << 0.0001n2 For
sufficiently large n

Polynomial << Exponential: n1000 << 20.001n For
sufficiently large n
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Analysis of Algorithms

Proving Asymptotic Facts

f (n) = 3n2 + 7n + 8 ∈ Θ(g(n))

Choosing g(n): Simple Rule – Drop lower order
terms and constant factors. So g(n) = n2.

Use definitions
e.g. there exists real number constants
c1 > 0, c2 > 0 and n0 > 0, satisfying
c2g(n) ≥ f (n) ≥ c1g(n) for all natural numbers
n ≥ n0
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Analysis of Algorithms

Proving Asymptotic Facts - 2

3n2 + 7n + 8 > 3n2 + 7n > 3n2 > n2 for all n ≥ 0,
so f (n) ≥ c1g(n) with c1 = 3 and n0 = 1

7n < 7n2 for n > 1. Similarly 8 < 8n2 for n > 1.
So 3n2 + 7n + 8 < 3n2 + 7n2 + 8n2 = 18n2 for all
n > 1, so f (n) ≤ c2g(n) with c2 = 18 and n0 = 2

So we have shown that f (n) ∈ Θ(n2) using the definition
of Θ() with c1 = 3, c2 = 18, n0 = 2
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Analysis of Algorithms

Proving Asymptotic Facts - 3

constants c1, c2 MUST be POSITIVE (> 0)

Could have chosen c2 = 3 + ε for any ε > 0,
because 7n + 8 ≤ εn2 for sufficiently large n.
Usually, the smaller the ε you choose, the harder it
is to find n0. So choosing a larger ε is easier

Order of quantifiers matters!
∃c1c2∃n0∀n ≥ n0, c1g(n) ≤ f (n) ≤ c2g(n)
vs
∃n0∀n ≥ n0∃c1c2, c1g(n) ≤ f (n) ≤ c2g(n)

allows a different c1 and c2 for each n. Can choose
c2 = 1/n, and “prove” n3 ∈ Θ(n2).
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Analysis of Algorithms

Another problem

The i th prefix average of an array X is the average of the
first i + 1 elements of X :

A[i ] = (X [0] + X [1] + . . . + X [i ])/(i + 1)

We will look at 2 implementations.
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Analysis of Algorithms

A Slower Algorithm

Good example for determining the running time
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Analysis of Algorithms

Analysis

Outer loop iterates for j = 0, . . . , n − 1

Inner loop iterates for i = 0, . . . , j

The loop body takes Θ(1) steps
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Analysis of Algorithms

Analysis - 2

The easiest way to sum the running time is

T (n) =
n−1∑
j=0

j∑
i=0

1

=
n−1∑
j=0

(j + 1)

=
n∑

j=1

j

= n(n + 1)/2

So T (n) ∈ Θ(n2)
S. Datta (York Univ.) EECS 2011 W18 44 / 47



Analysis of Algorithms

A Faster Algorithm

Analysis: Linear time Θ(n)

S. Datta (York Univ.) EECS 2011 W18 45 / 47



Analysis of Algorithms

More practice - 1

Find the running time:
MatMult(Y ,Z , n)
1 // multiply n x n matrices Y ,Z
2 for i ← 1 to n
3 do for j ← 1 to n
4 do X [i , j ]← 0
5 for k ← 1 to n
6 do X [i , j ]← X [i , j ] + Y [i , k] ∗ Z [k , j ]
7 return x
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Analysis of Algorithms

More practice - 2

Analyze the running time of the following algorithm.
power(y , z)
1 // return y z where y ∈ R , z ∈ N
2 x ← 1
3 while z > 0
4 do if odd(z)
5 then x ← x ∗ y
6 z ← bz/2c
7 y ← y 2

8 return x
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