
EECS 2011 M:
Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18 1 / 47

http://www.eecs.yorku.ca/course/2011M


Introduction to Algorithm Analysis

Objectives

Review how to describe algorithms

Learn to reason about the running times of
algorithms, and compare their efficiency

To be able to compare algorithms and choose
appropriate ones

Note: Some slides in this presentation have been
adapted from the authors’ slides.

S. Datta (York Univ.) EECS 2011 W18 2 / 47



Describing Algorithms

Algorithms and Pseudo-code

[Webster] Algorithm: a procedure for solving a
mathematical problem in a finite number of steps ...
Pseudo-code

Use English rather than a real programming
language

More high-level than code

Hides many details

Preferred notation for describing algorithms

S. Datta (York Univ.) EECS 2011 W18 3 / 47



Describing Algorithms

Pseudo-code - 2

Control flow
if ... then ... [else . . . ]

while ... do ...

repeat ... until ...

for ... do ...
Indentation replaces braces

Method declaration
Algorithm method (arg [, arg ...])
Input ...
Output ...

S. Datta (York Univ.) EECS 2011 W18 4 / 47



Describing Algorithms

Pseudo-code - 3

Method call: method (arg [, arg. . . ])

Return value: return expression

Expressions:
Assignment: ← item Equality testing: =

Superscripts and other mathematical formatting allowed

S. Datta (York Univ.) EECS 2011 W18 5 / 47



Analysis of Algorithms - Background

Reasoning about Algorithms

I/O specs: Needed for correctness proofs,
performance analysis. E.g. for sorting:
INPUT: A[1..n] - an array of integers
OUTPUT: a permutation B of A such that
B[1] ≤ B[2] ≤ . . . ≤ B[n]

Correctness: The algorithm satisfies the output
specs for EVERY valid input – Later

Analysis: Compute the performance of the
algorithm, e.g., in terms of running time – next

S. Datta (York Univ.) EECS 2011 W18 6 / 47



Analysis of Algorithms - Background

Analysis of Algorithms

Measures of efficiency:
Running time

Space used

others, e.g., number of disk accesses, network accesses,...

Efficiency as a function of input size (NOT value!)
Number of data elements (numbers, points)

Number of bits in an input number

Examples: Find the factors of a number n, Determine if
an integer n is prime

Machine Model

S. Datta (York Univ.) EECS 2011 W18 7 / 47



Analysis of Algorithms - Background

Machine Model: Specific or Generic?

Modern computers are incredibly complex.

Modeling the memory hierarchy and network
connectivity generically is very difficult

All modern computers are “similar” in that they
provide the same basic operations.

Most general-purpose processors today have at most
eight processors or “cores”. The vast majority have
one or two or four. GPU’s have hundreds or
thousands.

Note: Need a generic model that models (approximately)
all machines

S. Datta (York Univ.) EECS 2011 W18 8 / 47



Analysis of Algorithms - Background

A Standardized, Abstract Machine Model

Random Access Machine (RAM) assumptions:

Instructions (each taking constant time):
Arithmetic (add, subtract, multiply, etc.)

Data movement (assign)

Control (branch, subroutine call, return)

Comparison

Data types – integers, characters, and floats

Note:
Ignores memory hierarchy, network!

S. Datta (York Univ.) EECS 2011 W18 9 / 47



Analysis of Algorithms - Background

Asymptotic Analysis

Instructions (each taking constant time):
Arithmetic (add, subtract, multiply, etc.)

Data movement (assign)

Control (branch, subroutine call, return)

Comparison

Data types – integers, characters, and floats

S. Datta (York Univ.) EECS 2011 W18 10 / 47



Analysis of Algorithms - Background

Asymptotic Analysis

Cannot capture exact running times on a specific
machine

Captures the nature of growth of running times,
NOT actual values

Want to make statements like, “the running time of
an algorithm grows linearly with input size”.

Very useful for studying the behavior of algorithms
for LARGE inputs

S. Datta (York Univ.) EECS 2011 W18 11 / 47



Analysis of Algorithms - Background

An Example: Find the max of n numbers

Input: A[1..n] - an array of integers
Output: an element m of A such that A[j ] ≤ m,
1 ≤ j ≤ n

FindMax(A)
1 n← length(A)
2 max ← A[1]
3 for j ← 2 to n
4 do if max < A[j ]
5 then max ← A[j ]
6 return max

S. Datta (York Univ.) EECS 2011 W18 12 / 47



Analysis of Algorithms - Background

Find the max of n numbers: Java

S. Datta (York Univ.) EECS 2011 W18 13 / 47



Analysis of Algorithms - Background

Analysis of FindMax

FindMax(A)
1 n← length(A)
2 max ← A[1]
3 for j ← 2 to n
4 do if max < A[j ]
5 then max ← A[j ]
6 return max

line Cost Times
1 c1 1
2 c2 1
3 c3 n
4 c4 n − 1
5 c5 0 ≤ k ≤ n − 1
6 c6 1

Best Case: k = 0
Worst Case: k = n − 1
Average Case: ?

S. Datta (York Univ.) EECS 2011 W18 14 / 47



Analysis of Algorithms - Background

Best/Worst/Average Case Analysis

S. Datta (York Univ.) EECS 2011 W18 15 / 47



Analysis of Algorithms - Background

Best/Worst/Average Case Analysis - 2

The running time of an algorithm typically grows with
the input size.

Best Case: Not very informative

Average Case: Often very useful, but hard to
determine

Worst Case: Easier to analyze. Crucial in
applications like

Games
Finance
Robotics

S. Datta (York Univ.) EECS 2011 W18 16 / 47



Analysis of Algorithms - Background

Experimental Analysis of Running Time

S. Datta (York Univ.) EECS 2011 W18 17 / 47



Analysis of Algorithms - Background

Experimental Analysis of Running Time -
Issues

Need an (efficient) implementation

Get running time as a function of the input size n

Takes into account all possible inputs

Only valid on an abstract model of the
hardware/software environment

S. Datta (York Univ.) EECS 2011 W18 18 / 47



Analysis of Algorithms - Background

Theoretical Analysis of Running Time

Need description/pseudo-code, not implementation

Hard to know if the inputs used are representative

To compare two algorithms, the same hardware and
software environments must be used

S. Datta (York Univ.) EECS 2011 W18 19 / 47



Some Math Review

Some Math Review

S. Datta (York Univ.) EECS 2011 W18 20 / 47



Some Math Review

Seven Important Functions

Seven functions that appear frequently in algorithm
analysis:

Constant ≈ 1

Logarithmic ≈ log n

Linear ≈ n

N-Log-N ≈ n log n

Quadratic ≈ n2

Cubic ≈ n3

Exponential ≈ 2n

S. Datta (York Univ.) EECS 2011 W18 21 / 47



Some Math Review

Seven Important Functions - 2
f(

n
)

107106

n

105104103102

Linear

Exponential

Constant

Logarithmic

N-Log-N

Quadratic

Cubic

101510141013101210111010109108101

100

104

108

1012

1016

1020

1028

1032

1036

1040

1044

100

1024

Note the log-log axes

S. Datta (York Univ.) EECS 2011 W18 22 / 47



Some Math Review

Relevant Math Facts - Exponents

a(b+c) = abac

abc = (ab)c

ab/ac = ab−c

b = aloga b

bc = ac loga b

S. Datta (York Univ.) EECS 2011 W18 23 / 47



Some Math Review

Relevant Math Facts - Logarithms

logb(xy) = logb x + logb y

log b(x/y) = logb x − logb y

logb x
a = a logb x

logb a = logx a/ logx b

Also, note the difference between log log n and
(log n)2 = log2 n.

S. Datta (York Univ.) EECS 2011 W18 24 / 47



Some Math Review

Relevant Math Facts - Sums of Series

The sum of the first n integers is
1 + 2 + . . . + n = n(n + 1)/2

S. Datta (York Univ.) EECS 2011 W18 25 / 47



Analysis of Algorithms

Analysis of FindMax - Continued

FindMax(A)
1 n← length(A)
2 max ← A[1]
3 for j ← 2 to n
4 do if max < A[j ]
5 then max ← A[j ]
6 return max

line Cost Times
1 c1 1
2 c2 1
3 c3 n
4 c4 n − 1
5 c5 0 ≤ k ≤ n − 1
6 c6 1

Running time (worst-case):
c1 + c2 + c6 − c4 − c5 + (c3 + c4 + c5)n
Running time (best-case): c1 + c2 + c6 − c4 + (c3 + c4)n

S. Datta (York Univ.) EECS 2011 W18 26 / 47



Analysis of Algorithms

Simplifying Running Times

Note that the worst-case time of
c1 + c2 + c6 − c4 − c5 + (c3 + c4 + c5)n is

Complex

Not useful as the ci ’s are machine dependent

A simpler expression: C + Dn [still complex].

Want to say this is Linear, i.e., ≈ n

Q: How/why can we throw away the coefficient D and
the lower order term C?

S. Datta (York Univ.) EECS 2011 W18 27 / 47



Analysis of Algorithms

Simplifying Running Times - Rationale

Discarding lower order terms: We are interested in
large n – cleaner theory, usually realistic.

Discarding coefficients (multiplicative constants):
the coefficients are machine dependent

Caveat: remember these assumptions when interpreting
results! We will not get:

Exact run times

Comparison for small instances

Small differences in performance

S. Datta (York Univ.) EECS 2011 W18 28 / 47



Analysis of Algorithms

Asymptotic Analysis

Goal: to simplify analysis of running time by getting rid
of “details”, which may be affected by specific
implementation and hardware

So 3n2 − 5n + 6 ≈ n2

Capturing the essential information: how the
running time of an algorithm increases with the size
of the input in the limit

Asymptotically more efficient algorithms are best for
all but small inputs

S. Datta (York Univ.) EECS 2011 W18 29 / 47



Analysis of Algorithms

Asymptotic Notation: Big-Oh

Suppose f (n) and g(n) are functions over non-negative
integers
The “big-Oh” Notation O() is defined as
f (n) ∈ O(g(n)), if there exists real number constants
c > 0 and n0 > 0, satisfying f (n) ≤ cg(n) for all natural
numbers n ≥ n0

Example:

2n + 10 ∈ O(n)

3n2 − 5n + 6 ∈ O(n2)

2n + 10 ∈ O(n3)

S. Datta (York Univ.) EECS 2011 W18 30 / 47



Analysis of Algorithms

Big-Oh: Intuition

We choose g(n) to be a very simple function

Image: https://xlinux.nist.gov/dads/Images/bigOGraph.gif

S. Datta (York Univ.) EECS 2011 W18 31 / 47



Analysis of Algorithms

Asymptotic Notation: Big-Omega

The “big-Oh” Notation Ω() is defined as
f (n) ∈ Ω(g(n)), if there exists real number constants
c > 0 and n0 > 0, satisfying f (n) ≥ cg(n) for all natural
numbers n ≥ n0

Example:

2n + 10 ∈ Ω(n)

3n2 − 5n + 6 ∈ Ω(n2)

3n2 − 5n + 6 ∈ Ω(n)

S. Datta (York Univ.) EECS 2011 W18 32 / 47



Analysis of Algorithms

Asymptotic Notation: Big-Theta

f (n) ∈ Θ(g(n)) if

f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

there exists real number constants c1 > 0, c2 > 0
and n0 > 0, satisfying c2g(n) ≥ f (n) ≥ c1g(n) for
all natural numbers n ≥ n0

Example:

2n + 10 ∈ Θ(n)

3n2 − 5n + 6 ∈ Θ(n2)

3n2 − 5n + 6 6∈ Ω(n), 2n + 10 6∈ Θ(n2)

S. Datta (York Univ.) EECS 2011 W18 33 / 47



Analysis of Algorithms

Big-Theta: Intuition

Again, we choose g(n) to be a very simple function

Image: https://xlinux.nist.gov/dads/Images/thetaGraph.gif

S. Datta (York Univ.) EECS 2011 W18 34 / 47



Analysis of Algorithms

Common Abuses of Notation

Many, many abuses of asymptotic notation in EECS
literature.

f (n) = O(g(n)) instead of f (n) ∈ O(g(n))

O(g(n)) instead of Θ(g(n))

Common “colloquial” uses:

Θ(1) – constant.

nΘ(1) – polynomial

2Θ(n) – exponential

S. Datta (York Univ.) EECS 2011 W18 35 / 47



Analysis of Algorithms

Common Mistakes

nΘ(1) 6∈ Θ(n1)

2Θ(n) 6∈ Θ(2n)

S. Datta (York Univ.) EECS 2011 W18 36 / 47



Analysis of Algorithms

Important Facts

Logarithmic << Polynomial: log1000 n << n0.001 For
sufficiently large n

Linear << Quadratic: 10000n << 0.0001n2 For
sufficiently large n

Polynomial << Exponential: n1000 << 20.001n For
sufficiently large n

S. Datta (York Univ.) EECS 2011 W18 37 / 47



Analysis of Algorithms

Proving Asymptotic Facts

f (n) = 3n2 + 7n + 8 ∈ Θ(g(n))

Choosing g(n): Simple Rule – Drop lower order
terms and constant factors. So g(n) = n2.

Use definitions
e.g. there exists real number constants
c1 > 0, c2 > 0 and n0 > 0, satisfying
c2g(n) ≥ f (n) ≥ c1g(n) for all natural numbers
n ≥ n0

S. Datta (York Univ.) EECS 2011 W18 38 / 47



Analysis of Algorithms

Proving Asymptotic Facts - 2

3n2 + 7n + 8 > 3n2 + 7n > 3n2 > n2 for all n ≥ 0,
so f (n) ≥ c1g(n) with c1 = 3 and n0 = 1

7n < 7n2 for n > 1. Similarly 8 < 8n2 for n > 1.
So 3n2 + 7n + 8 < 3n2 + 7n2 + 8n2 = 18n2 for all
n > 1, so f (n) ≤ c2g(n) with c2 = 18 and n0 = 2

So we have shown that f (n) ∈ Θ(n2) using the definition
of Θ() with c1 = 3, c2 = 18, n0 = 2

S. Datta (York Univ.) EECS 2011 W18 39 / 47



Analysis of Algorithms

Proving Asymptotic Facts - 3

constants c1, c2 MUST be POSITIVE (> 0)

Could have chosen c2 = 3 + ε for any ε > 0,
because 7n + 8 ≤ εn2 for sufficiently large n.
Usually, the smaller the ε you choose, the harder it
is to find n0. So choosing a larger ε is easier

Order of quantifiers matters!
∃c1c2∃n0∀n ≥ n0, c1g(n) ≤ f (n) ≤ c2g(n)
vs
∃n0∀n ≥ n0∃c1c2, c1g(n) ≤ f (n) ≤ c2g(n)

allows a different c1 and c2 for each n. Can choose
c2 = 1/n, and “prove” n3 ∈ Θ(n2).

S. Datta (York Univ.) EECS 2011 W18 40 / 47



Analysis of Algorithms

Another problem

The i th prefix average of an array X is the average of the
first i + 1 elements of X :

A[i ] = (X [0] + X [1] + . . . + X [i ])/(i + 1)

We will look at 2 implementations.

S. Datta (York Univ.) EECS 2011 W18 41 / 47



Analysis of Algorithms

A Slower Algorithm

Good example for determining the running time

S. Datta (York Univ.) EECS 2011 W18 42 / 47



Analysis of Algorithms

Analysis

Outer loop iterates for j = 0, . . . , n − 1

Inner loop iterates for i = 0, . . . , j

The loop body takes Θ(1) steps

S. Datta (York Univ.) EECS 2011 W18 43 / 47



Analysis of Algorithms

Analysis - 2

The easiest way to sum the running time is

T (n) =
n−1∑
j=0

j∑
i=0

1

=
n−1∑
j=0

(j + 1)

=
n∑

j=1

j

= n(n + 1)/2

So T (n) ∈ Θ(n2)
S. Datta (York Univ.) EECS 2011 W18 44 / 47



Analysis of Algorithms

A Faster Algorithm

Analysis: Linear time Θ(n)

S. Datta (York Univ.) EECS 2011 W18 45 / 47



Analysis of Algorithms

More practice - 1

Find the running time:
MatMult(Y ,Z , n)
1 // multiply n x n matrices Y ,Z
2 for i ← 1 to n
3 do for j ← 1 to n
4 do X [i , j ]← 0
5 for k ← 1 to n
6 do X [i , j ]← X [i , j ] + Y [i , k] ∗ Z [k , j ]
7 return x

S. Datta (York Univ.) EECS 2011 W18 46 / 47



Analysis of Algorithms

More practice - 2

Analyze the running time of the following algorithm.
power(y , z)
1 // return y z where y ∈ R , z ∈ N
2 x ← 1
3 while z > 0
4 do if odd(z)
5 then x ← x ∗ y
6 z ← bz/2c
7 y ← y 2

8 return x

S. Datta (York Univ.) EECS 2011 W18 47 / 47


	Describing Algorithms
	Analysis of Algorithms - Background
	Some Math Review
	Analysis of Algorithms

