EECS 2011 M:

Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18

1/ 47

http://www.eecs.yorku.ca/course/2011M

Introduction to Algorithm Analysis

Objectives
@ Review how to describe algorithms

@ Learn to reason about the running times of
algorithms, and compare their efficiency

@ To be able to compare algorithms and choose
appropriate ones

Note: Some slides in this presentation have been
adapted from the authors’ slides.

S. Datta (York Univ.) EECS 2011 W18 2/ 47

Describing Algorithms

Algorithms and Pseudo-code

[Webster] Algorithm: a procedure for solving a
mathematical problem in a finite number of steps ...
Pseudo-code

@ Use English rather than a real programming
language

@ More high-level than code
@ Hides many details

@ Preferred notation for describing algorithms

S. Datta (York Univ.) EECS 2011 W18 3/ 41

Describing Algorithms

Pseudo-code - 2

e Control flow
o if ... then ... [else ...]

e while ... do ...
@ repeat ... until ...

e for ... do ...
Indentation replaces braces

@ Method declaration

Algorithm method (arg [, arg ..

Input ...
Output ...

S. Datta (York Univ.) EECS 2011 W18

1)

4/ 47

Describing Algorithms

Pseudo-code - 3

@ Method call: method (arg [, arg...])

@ Return value: return expression

@ Expressions:
@ Assignment: < item Equality testing: =

@ Superscripts and other mathematical formatting allowed

S. Datta (York Univ.) EECS 2011 W18 5/ 47

Analysis of Algorithms - Background

Reasoning about Algorithms

@ |/0 specs: Needed for correctness proofs,
performance analysis. E.g. for sorting:
INPUT: A[Ll..n] - an array of integers
OUTPUT: a permutation B of A such that
B[1] < B[2] < ... < B[n]

@ Correctness: The algorithm satisfies the output
specs for EVERY valid input -

@ Analysis: Compute the performance of the
algorithm, e.g., in terms of running time —

S. Datta (York Univ.) EECS 2011 W18 6/ 47

Analysis of Algorithms - Background

Analysis of Algorithms

@ Measures of efficiency:
@ Running time

@ Space used

@ others, e.g., number of disk accesses, network accesses,...
e Efficiency as a function of input size (NOT value!)
e Number of data elements (numbers, points)

@ Number of bits in an input number

e Examples: Find the factors of a number n, Determine if
an integer n is prime

@ Machine Model

S. Datta (York Univ.) EECS 2011 W18 7/ 47

Analysis of Algorithms - Background

Machine Model: Specific or Generic?

Modern computers are incredibly complex.

@ Modeling the memory hierarchy and network
connectivity generically is very difficult

@ All modern computers are “similar” in that they
provide the same basic operations.

@ Most general-purpose processors today have at most
eight processors or “cores’. The vast majority have
one or two or four. GPU’s have hundreds or
thousands.

Note: Need a generic model that models (approximately)
all machines

S. Datta (York Univ.) EECS 2011 W18 8 /471

Analysis of Algorithms - Background

A Standardized, Abstract Machine Model

Random Access Machine (RAM) assumptions:

@ Instructions (each taking constant time):
e Arithmetic (add, subtract, multiply, etc.)

e Data movement (assign)
e Control (branch, subroutine call, return)

e Comparison
@ Data types — integers, characters, and floats

Note:
lgnores memory hierarchy, network!

S. Datta (York Univ.) EECS 2011 W18 9/ 47

Analysis of Algorithms - Background
Asymptotic Analysis
@ Instructions (each taking constant time):
e Arithmetic (add, subtract, multiply, etc.)
e Data movement (assign)
e Control (branch, subroutine call, return)
e Comparison

@ Data types — integers, characters, and floats

S. Datta (York Univ.) EECS 2011 W18

10 / 47

Analysis of Algorithms - Background

Asymptotic Analysis

@ Cannot capture exact running times on a specific
machine

@ Captures the nature of growth of running times,
NOT actual values

@ Want to make statements like, “the running time of
an algorithm grows linearly with input size”.

@ Very useful for studying the behavior of algorithms
for LARGE inputs

S. Datta (York Univ.) EECS 2011 W18 11/ 47

Analysis of Algorithms - Background

An Example: Find the max of n numbers

Input: A[l..n] - an array of integers
Output: an element m of A such that A[j] < m,
1<j<n

FINDMAX(A)
1 n < length(A)
2 max + A[l]

3 forj«<2ton

4 do if max < A[j]

5 then max < A[j]
6 return max

S. Datta (York Univ.) EECS 2011 W18 12 / 47

Analysis of Algorithms - Background

Find the max of n numbers: Java

return currentMax;

}

1 /*x Returns the maximum value of a nonempty array of numbers. */

2 public static double arrayMax(double[| data) {

3 int n = data.length;

4 double currentMax = data[0]; // assume first entry is biggest (for now)
5 for (int j=1;j < n; j++) // consider all other entries

6 if (data[j] > currentMax) // if data[j] is biggest thus far...

7 currentMax = data[j]; // record it as the current max

8

9

S. Datta (York Univ.) EECS 2011 W18 13 / 47

Analysis of Algorithms - Background

Analysis of FINDMAX

FINDMAX(A) line | Cost Times

1 n <« length(A) 1 | a 1

2 max « All] 2 o)) 1

3 forj<2ton 3| c n

4 do if max < A[J] 4 | ¢ n—1

5 then max < A[j] | 5 g [0<k<n-1
6 return max 6 Co 1

Best Case: k=0
Worst Case: k=n—1
Average Case: 7

S. Datta (York Univ.) EECS 2011 W18 14 / 47

Analysis of Algorithms - Background

Best/Worst/Average Case Analysis

O best case
MW average case
| worst case

120+

100+

80

60 -

40

Running Time

2071

0
1000 2000 3000 4000

S. Datta (York Univ.) EECS 2011 W18 15 / 47

Analysis of Algorithms - Background

Best/Worst/Average Case Analysis - 2

The running time of an algorithm typically grows with
the input size.

@ Best Case: Not very informative

@ Average Case: Often very useful, but hard to
determine

@ Worst Case: Easier to analyze. Crucial in
applications like
e Games
e Finance
e Robotics

S. Datta (York Univ.) EECS 2011 W18 16 / 47

Analysis of Algorithms - Background

Experimental Analysis of Running Time

1 long startTime = System.currentTimeMillis(); // record the starting time
2 /* (run the algorithm) %/
3 long endTime = System.currentTimeMillis(); // record the ending time
4 long elapsed = endTime — startTime; // compute the elapsed time
9000 5
8000 -
7000 - .
o«
6000 - ..
M L
£ 5000 - 5
£ 4000 - r
" 3000 - .
[
2000 - w "
"
1000 - -
o+12 A .
0 50 100

S. Datta (York Univ.) EECS 2011 W18 17 / 47

Analysis of Algorithms - Background

Experimental Analysis of Running Time -
Issues

@ Need an (efficient) implementation
@ Get running time as a function of the input size n
@ Takes into account all possible inputs

@ Only valid on an abstract model of the
hardware /software environment

S. Datta (York Univ.) EECS 2011 W18 18 / 47

Analysis of Algorithms - Background

Theoretical Analysis of Running Time

@ Need description/pseudo-code, not implementation
@ Hard to know if the inputs used are representative

@ To compare two algorithms, the same hardware and
software environments must be used

S. Datta (York Univ.) EECS 2011 W18 19 / 47

Some Math Review

Some Math Review

Copyright 2005 by Randy Glasbergen. www.glasbergen.com

)/JZZ‘SH% =

LASBERGEN —

“You have to solve this problem by yourself. You can’t call tech support.”

S. Datta (York Univ.) EECS 2011 W18 20 / 47

Some Math Review

Seven Important Functions

Seven functions that appear frequently in algorithm
analysis:

e Constant ~ 1

@ Logarithmic ~ log n
@ Linear = n

@ N-Log-N ~ nlogn

e Quadratic ~ n?

@ Cubic ~ n?

e Exponential =~ 2"

S. Datta (York Univ.) EECS 2011 W18 21/ 47

Some Math Review

Seven Important Functions - 2

1044
10% o
10%
1032
1028 /" o .
—~ 1024
\E 1020 / L /
10 / — I
10]2 / /C(L
108 / o i —> -
10:‘] T
107 =1 T 1 1 1
10° 10" 10* 10° 10* 10° 10° 107 10% 10° 10'° 10'! 10'2 10" 10'* 10'5
n
Note the log-log axes

S. Datta (York Univ.) EECS 2011 W18

—ae— Exponential
—o— Cubic
—&— Quadratic
—0O— N-Log-N
—— Linear
—4— Logarithmic
—— Constant

22 / 41

Some Math Review

Relevant Math Facts - Exponents

S. Datta (York Univ.) EECS 2011 W18 23 / 47

Some Math Review

Relevant Math Facts - Logarithms

o log,(xy) = log, x + log, y
o log b(x/y) = log, x — log, y
@ log, x? = alog, x

@ log,a=log,a/log, b

Also, note the difference between loglog n and
(log n)? = log? n.

S. Datta (York Univ.) EECS 2011 W18 24 /47

Some Math Review

Relevant Math Facts - Sums of Series

S = N W A U1 N

1 2 3 4 5 6

The sum of the first n integers is
1+24+...+n=n(n+1)/2

S. Datta (York Univ.) EECS 2011 W18 25 / 47

Analysis of Algorithms

Analysis of FINDMAX - Continued

FINDMAX(A) line | Cost Times

1 n < length(A) 1 | a 1

2 max « A[l] 2 %)) 1

3 forj«<2ton 3 c3 n

4 do if max < A[j] 4 o n—1

5 then max «+ A[j] | 5 g [0<k<n-1
6 return max 6 Cs 1

Running time (worst-case):
at+o+tce—a—c+(a+c+ac)n

Running time (best-case): a1 + &+ ¢ — a + (c3+ ca)n

S. Datta (York Univ.) EECS 2011 W18

26 / 47

Analysis of Algorithms

Simplifying Running Times

Note that the worst-case time of
at+o+tcec—a—c+(a+c+c)nis

e Complex

@ Not useful as the ¢;'s are machine dependent

A simpler expression: C + Dn [still complex].
Want to say this is Linear, i.e., = n

Q: How/why can we throw away the coefficient D and
the lower order term C?

S. Datta (York Univ.) EECS 2011 W18 27 / 47

Analysis of Algorithms

Simplifying Running Times - Rationale

@ Discarding lower order terms: We are interested in
large n — cleaner theory, usually realistic.

e Discarding coefficients (multiplicative constants):
the coefficients are machine dependent

Caveat: remember these assumptions when interpreting
results! We will not get:

@ Exact run times
@ Comparison for small instances

e Small differences in performance

S. Datta (York Univ.) EECS 2011 W18 28 / 47

Analysis of Algorithms

Asymptotic Analysis

Goal: to simplify analysis of running time by getting rid
of “details”, which may be affected by specific
implementation and hardware

@ So3n® —5n+6 =~ n?

e Capturing the essential information: how the
running time of an algorithm increases with the size
of the input in the limit

@ Asymptotically more efficient algorithms are best for
all but small inputs

S. Datta (York Univ.) EECS 2011 W18 29 / 47

Analysis of Algorithms

Asymptotic Notation: Big-Oh

Suppose f(n) and g(n) are functions over non-negative
integers

The "big-Oh” Notation O() is defined as

f(n) € O(g(n)), if there exists real number constants

c > 0 and ny > 0, satisfying f(n) < cg(n) for all natural
numbers n > ng

Example:

@ 2n+10 € O(n)
e 3n*> —5n+6 € O(n?)
e 2n+10 € O(n?)

S. Datta (York Univ.) EECS 2011 W18 30 / 47

Analysis of Algorithms

Big-Oh: Intuition

We choose g(n) to be a very simple function

cg {n)
f{n)

N k

Image: https://xlinux.nist.gov/dads/Images/bigOGraph.gif

S. Datta (York Univ.) EECS 2011 W18 31/ 47

Analysis of Algorithms

Asymptotic Notation: Big-Omega

The “big-Oh” Notation () is defined as
f(n) € Q(g(n)), if there exists real number constants

¢ > 0 and ng > 0, satisfying f(n) > cg(n) for all natural
numbers n > ng
Example:

@ 2n+ 10 € Q(n)
e 3n° —5n+6 € Q(n?)

e 3n* —5n+6 € Q(n)

S. Datta (York Univ.) EECS 2011 W18 32/ 47

Analysis of Algorithms

Asymptotic Notation: Big-Theta

f(n) € ©(g(n)) if
e f(n) € O(g(n)) and f(n) € Q(g(n))
@ there exists real number constants ¢; > 0,¢ >0

and ng > 0, satisfying c,g(n) > f(n) > c1g(n) for
all natural numbers n > ng

Example:
@ 2n+ 10 € ©(n)

e 3n* —5n+6 € O(n?)
e 3n* —5n+6 ¢ Q(n), 2n+ 10 ¢ O(n?)

S. Datta (York Univ.) EECS 2011 W18 33 /47

Analysis of Algorithms

Big- Theta: Intuition

Again, we choose g(n) to be a very simple function

<g (n)
fin)

9 (n)

NS k

Image: https://xlinux.nist.gov/dads/Images/thetaGraph.gif

S. Datta (York Univ.) EECS 2011 W18 34 /47

Analysis of Algorithms

Common Abuses of Notation

Many, many abuses of asymptotic notation in EECS
literature.

e f(n) = O(g(n)) instead of f(n) € O(g(n))
e O(g(n)) instead of ©(g(n))

Common “colloquial” uses:
@ O(1) — constant,

©(1) — polynomial

e 2°(" _ exponential

S. Datta (York Univ.) EECS 2011 W18

35 / 47

Analysis of Algorithms

Common Mistakes

o n°M) ¢ O(n!)

e 2°(n Z ©(2")

S. Datta (York Univ.) EECS 2011 W18

36 / 47

Analysis of Algorithms

Important Facts

1000

@ Logarithmic << Polynomial: log'*” n << n%%! For

sufficiently large n

@ Linear << Quadratic: 10000n << 0.0001n? For
sufficiently large n

@ Polynomial << Exponential: n1%%0 << 20:00in Fo
sufficiently large n

S. Datta (York Univ.) EECS 2011 W18 37 /47

Analysis of Algorithms

Proving Asymptotic Facts

f(n) =3n?>+7n+8 € ©(g(n))
@ Choosing g(n): Simple Rule — Drop lower order

terms and constant factors. So g(n) = n?.

@ Use definitions
e.g. there exists real number constants
c1 > 0,¢ > 0and ng > 0, satisfying
cg(n) > f(n) > c1g(n) for all natural numbers
n > ng

S. Datta (York Univ.) EECS 2011 W18 38 / 47

Analysis of Algorithms

Proving Asymptotic Facts - 2
@ 3n°+7n+8>3n>+7n>3n*>>n?forall n>0,
so f(n) > clg(n) with ¢ =3 and ny =1
@ 7n < 7n? for n > 1. Similarly 8 < 8n® for n > 1.
So 3n? +7n+ 8 < 3n? 4+ 7n? 4 8n? = 18n? for all

n>1,so f(n) < cg(n) with c; =18 and ny = 2

So we have shown that f(n) € ©(n?) using the definition
of ©() with ¢ =3,¢, =18,ng =2

S. Datta (York Univ.) EECS 2011 W18 39 / 47

Analysis of Algorithms

Proving Asymptotic Facts - 3

@ constants c;, o MUST be POSITIVE (> 0)

@ Could have chosen ¢, = 3 + € for any € > 0,
because 7n + 8 < en? for sufficiently large n.
Usually, the smaller the € you choose, the harder it
is to find ng. So choosing a larger € is easier

@ Order of quantifiers matters!
dcicdngVn > ng, c1g(n) < f(n) < cg(n)

VS
Ang¥n > nydeicp, c1g(n) < f(n) < cg(n)

@ allows a different ¢; and ¢, for each n. Can choose

co = 1/n, and “prove” n* € ©(n?).

S. Datta (York Univ.) EECS 2011 W18 40 / 47

Analysis of Algorithms

Another problem

The i prefix average of an array X is the average of the
first i + 1 elements of X:

Alil = (X[0] + X[1] + ... + X[])/(i + 1)

We will look at 2 implementations.

S. Datta (York Univ.) EECS 2011 W18 41 /47

Analysis of Algorithms

A Slower Algorithm

1 /%% Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */
2 public static double[| prefixAveragel(double[] x) {

3 int n = x.length;

4 double[| a = new double[n]; // filled with zeros by default

5 for (int j=0;j < n; j++) {

6 double total = 0; // begin computing x[0] + ... + X[j]
7 for (int i=0; i <=j; i++)

8 total += x]i];

9 a[j] = total / (j+1); // record the average
10
11 return 3;
12}

Good example for determining the running time

S. Datta (York Univ.) EECS 2011 W18 42 /47

Analysis of Algorithms

Analysis

@ Outer loop iterates for j =0,...,n—1
@ Inner loop iterates for i =0,...,J

@ The loop body takes ©(1) steps

S. Datta (York Univ.) EECS 2011 W18 43 / 47

Analysis - 2

The easiest way to sum the running time is

T(n) = 1

J
i=0

= G+

= n(n+1)/2
So T(n) € ©(n?)

S. Datta (York Univ.) EECS 2011 W18 44 / 47

Analysis of Algorithms

A Faster Algorithm

1 /#x Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */
2 public static double[] prefixAverage2(double[| x) {

3 int n = x.length;

4 double[| a = new double[n]; // filled with zeros by default

5 double total = 0; // compute prefix sum as x[0] + x[1] + ...
6 for (int j=0; j < n; j++) {

7 total += x][j]; // update prefix sum to include x[j]

8 a[j] = total / (j+1); // compute average based on current sum
9
10 return a;
11}

Analysis: Linear time ©(n)

S. Datta (York Univ.) EECS 2011 W18 45 / 47

Analysis of Algorithms

More practice - 1

Find the running time:
MarMurr(Y, Z, n)

// multiply n x n matrices Y, Z
2 fori+1ton

3 dofor <« 1ton
4 do X[i,j]+ 0O
5

6

7

[

for k< 1ton
do X[i,j] + X[i,j] + Y[i, k] * Z[k.j]
return x

S. Datta (York Univ.) EECS 2011 W18 46 / 47

Analysis of Algorithms

More practice - 2

Analyze the running time of the following algorithm.
POWER(y, 2)

1 //return y* wherey € R,z€ N
2 x+1

3 while z >0

4 do if odd(z)

5 then x < xxy
6 z+ |z/2]
Ty y

8 return x

S. Datta (York Univ.) EECS 2011 W18 47 / 47

	Describing Algorithms
	Analysis of Algorithms - Background
	Some Math Review
	Analysis of Algorithms

