EECS 2011 M:

Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18

1/23

http://www.eecs.yorku.ca/course/2011M

Hashing - Uses

Hash Tables

Ch. 9.1,9.2
Applications

@ Dictionaries
@ Set membership queries

@ Union, intersection of sets

Note: Some slides in this presentation have been
adapted from the authors’ slides.

S. Datta (York Univ.) EECS 2011 W18 2/23

Hashing - Uses

Dictionaries

set S of elements, each with an associated key, value
pairs.
Complexity of lookup in a set of size n:

@ Unsorted list: Q(n) worst-case time

@ Sorted list: Q(log n) worst-case time

@ Search trees (later topic): Q(log n) worst-case time
Q: (how) can we do better?

S. Datta (York Univ.) EECS 2011 W18 3/23

Hashing - Uses

The Map ADT

A map M is a searchable collection of key-value entries

@ Main operations: search, insert, and delete items

@ Multiple entries with the same key are not allowed
e ADT:

e get(k): return value of entry with key k, or null

e put(k,v): insert entry (k, v); return old value associated
with k, or null

remove(k): remove entry with key k, return its value/null
size(), isEmpty()

entrySet(): returns an iterable collection of entries in M
keySet(): return an iterable collection of the keys in M
values(): return an iterable collection of the values in M

S. Datta (York Univ.) EECS 2011 W18 4/23

Hashing - Uses

List-based Maps

Doubly linked list implementation:

header | nodes/positions | trailer

S. Datta (York Univ.) EECS 2011 W18 5/ 23

Hashing - Uses

List-based Maps

Performance:

@ put, get and remove take #(n) time since in the
worst case (the item is not found) we traverse the
entire sequence to look for an item with the given
key

@ The unsorted list implementation is effective only
for small maps

S. Datta (York Univ.) EECS 2011 W18 6/23

Hashing - Uses

Direct Access Tables

@ Define a one-to-one function from keys to natural
numbers

@ Allocate an array large enough to have entire key
space as indices

@ |Ignoring space and array initialization overhead,
add/delete/find are all #(1) operations

Q: Can we get “similar” times for smaller arrays?

S. Datta (York Univ.) EECS 2011 W18 7/23

Hash Functions

Hash Tables

@ A hash table is a data structure that can be used to
make map operations faster. While worst-case is
still #(n), average case is typically 6(1)

@ A hash table for a given key type consists of
e Hash function h
e Array (called table) of size N
@ the goal is to store item (k, v) at index i = h(k) of
the hash table where h() is a hash function whose
input is the key of the element and output is a
location in the hash table

S. Datta (York Univ.) EECS 2011 W18 8/23

Hash Functions

Hash Functions

@ A hash function h maps keys of a given type to
integers in a fixed interval [0, N — 1],
E.g., h(k) = k mod N is a hash function for integer
keys. The size N is usually chosen to be a prime.

@ Hash functions are many-to-one, there can be
collisions

@ Since different keys map to the same location, need
to resolve collisions carefully

S. Datta (York Univ.) EECS 2011 W18 9/23

Hash Functions

Hash Functions - examples

@ h2(y) =y mod N

e Multiply, Add and Divide (MAD):
h2(y) = (ay + b) mod N, a, b non-negative
integers, and a mod N # 0

@ Integer cast: We reinterpret the bits of the key as
an integer

@ Component sum: partition the bits of the key into
components of fixed length (e.g., 16 or 32 bits) and
sum the components (ignoring overflows)

S. Datta (York Univ.) EECS 2011 W18 10 / 23

Hash Functions

Polynomial Hash Functions

@ Partition the key into fixed length (e.g., 8, 16 or 32
bits) chunks ag, a1, ..., a,_1. Fix a constant z > 1.

@ Evaluate (ignoring overflows)

p(z) = ap + a1z + a2’ + ...+ ap 12"}

@ Especially suitable for strings

@ Horner's rule for computing p(z) in 6(n) time
0 pO(Z) = dp-1
Q pi(z)=ari1+2pia(2)(i=12,...,n—1)
Q n(z) = pn-1(2)

S. Datta (York Univ.) EECS 2011 W18 11/ 23

Hash Functions

Clustering Behaviour of Hash Functions

@ Desirable in some applications: like searching with
approximate keys.

@ Undesirable in some scenarios: e.g. cryptographic
has functions

S. Datta (York Univ.) EECS 2011 W18 12 /23

Hash Functions Handling collisions

Handling Collisions - Techniques

e Chaining
0@
AEN ozssrz001
2@
3o
plKSpy 451-229-004 gy 981-101-004

@ Open addressing with Linear Probing
@ Open addressing with Double Hashing

S. Datta (York Univ.) EECS 2011 W18 13 /23

Hash Functions Handling collisions

Chaining

@ A new data structure at each location

@ Often a linked list
For linked list based chaining:

@ Worst case time for insert: 6(1)
@ Worst case time for delete, search: Q(n)
@ In practice, the array size can be chosen to tradeoff

array initialization costs with search/delete costs

S. Datta (York Univ.) EECS 2011 W18 14 /23

Hash Functions Handling collisions

Open Addressing with Linear Probing

the colliding item is placed in another cell of the table

@ Linear Probing: colliding item in the next
(circularly) available table cell

@ Each table cell inspected is referred to as a “probe”

e Colliding items lump together, so that future
collisions cause a longer sequence of probes

S. Datta (York Univ.) EECS 2011 W18 15/ 23

Hash Functions Handling collisions

Linear Probing (h(k) = k mod 7)

0 1 2 3 4 5 6

50 Insert 50
50 47 Insert 47
50 | 43 47 Insert 43
50 | 43 | 31 47 Insert 31
50 | 43 | 31| 36 | 47 Insert 36
50 | 43|31 | 36|47 |20 Insert 20
27 |50 | 43|31 | 3647 |20 Insert 27

<
<€

S. Datta (York Univ.) EECS 2011 W18 16 / 23

Hash Functions Handling collisions

Linear Probing - Details

get(k)
@ start at cell h(k)

@ probe consecutive
locations until

@ An item with key k
is found, or

@ An empty cell is
found, or N cells
have been
unsuccessfully
probed

Insertions and deletions:

problem
0 1 2 3 4 5 6

27 (50 | 43 | 31| 36 | 47 | 20 Delete 50

27 43 | 31| 36| 47 | 20 Delete 43

TFaiIs?

Solution: introduce a special
object, called DEFUNCT, to
replace deleted elements

S. Datta (York Univ.) EECS 2011 W18 17 /23

Hash Functions Handling collisions

Linear Probing: Add and Remove

put(k, o)
remove (k) @ throw an exception if the
@ search for an entry table is full
with key k

e start at cell h(k)

@ If such an entr :
y @ probe consecutive cells

(k, o) is found,

until
replace it with the @ A cell iis found that is
special item either empty or stores
DEFUNCT and DEFUNCT, or
return o @ N cells have been

unsuccessfully probed

e We store (k,0) in cell i

@ Else, return null

S. Datta (York Univ.) EECS 2011 W18 18 / 23

Hash Functions Handling collisions

Open addressing with Double Hashing

Suppose that i = h(k) leads to a collision.
@ uses a secondary hash function A (k) in addition to
the primary hash function h(x)
e iteratively probe the locations (i + jh'(k)) mod N
for j=0,1,....,N—1
@ h(k) cannot have zero values

@ Choose N to be prime. Common choices for h'(k):
e h(k)=q—k mod g, where
@ g <N and g is prime

@ The possible values for h'(k) are 1,2,...,q

S. Datta (York Univ.) EECS 2011 W18 19 /23

Hash Functions Performance of Hashing Schemes

Performance of Hashing Schemes

@ In the worst case, searches, insertions and removals
on a hash table take Q(n) time

@ worst case: all keys collide
@ The load factor A = n/N affects the performance of
a hash table

@ chaining: performance is typically good for A < 0.9
@ open addressing: performance is usually good for A < 0.5
@ java.util.HashMap maintains A < 0.75

@ Open addressing can be more memory efficient than
separate chaining

@ However, chaining is typically as fast or faster than
open addressing.

S. Datta (York Univ.) EECS 2011 W18 20 / 23

Hash Functions Applications of Hashing

Application of Hashing

@ small databases
@ compilers

@ browser caches

e Finding Set Intersection
e Complexity: Average case #(m + n)

e Alternative: Merge sort modification

S. Datta (York Univ.) EECS 2011 W18 21/ 23

Hash Functions Rehashing

Rehashing

When the load factor \ exceeds threshold, the table
must be rehashed.

@ A larger table is allocated (typically at least double
the size)

@ A new hash function is defined.

@ All existing entries are copied to this new table
using the new hash function.

S. Datta (York Univ.) EECS 2011 W18 22/ 23

Aside

Cryptographic Hash Functions

@ Used for digital signatures. A digital signature must
e depend on the content being signed, and

e be short
@ Must be hard to forge

Demo at www.hashemall.com

S. Datta (York Univ.) EECS 2011 W18 23/ 23

www.hashemall.com

	Hashing - Uses
	Hash Functions
	Handling collisions
	Performance of Hashing Schemes
	Applications of Hashing
	Rehashing

	Aside

