
EECS 2011 M:
Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18 1 / 23

http://www.eecs.yorku.ca/course/2011M


Hashing - Uses

Hash Tables

Ch. 9.1, 9.2
Applications

Dictionaries

Set membership queries

Union, intersection of sets

Note: Some slides in this presentation have been
adapted from the authors’ slides.

S. Datta (York Univ.) EECS 2011 W18 2 / 23



Hashing - Uses

Dictionaries

set S of elements, each with an associated key , value
pairs.
Complexity of lookup in a set of size n:

Unsorted list: Ω(n) worst-case time

Sorted list: Ω(log n) worst-case time

Search trees (later topic): Ω(log n) worst-case time

Q: (how) can we do better?

S. Datta (York Univ.) EECS 2011 W18 3 / 23



Hashing - Uses

The Map ADT

A map M is a searchable collection of key-value entries

Main operations: search, insert, and delete items

Multiple entries with the same key are not allowed
ADT:

get(k): return value of entry with key k , or null
put(k , v): insert entry (k , v); return old value associated
with k , or null
remove(k): remove entry with key k, return its value/null
size(), isEmpty()
entrySet(): returns an iterable collection of entries in M
keySet(): return an iterable collection of the keys in M
values(): return an iterable collection of the values in M

S. Datta (York Univ.) EECS 2011 W18 4 / 23



Hashing - Uses

List-based Maps

Doubly linked list implementation:

S. Datta (York Univ.) EECS 2011 W18 5 / 23



Hashing - Uses

List-based Maps

Performance:

put, get and remove take θ(n) time since in the
worst case (the item is not found) we traverse the
entire sequence to look for an item with the given
key

The unsorted list implementation is effective only
for small maps

S. Datta (York Univ.) EECS 2011 W18 6 / 23



Hashing - Uses

Direct Access Tables

Define a one-to-one function from keys to natural
numbers

Allocate an array large enough to have entire key
space as indices

Ignoring space and array initialization overhead,
add/delete/find are all θ(1) operations

Q: Can we get “similar” times for smaller arrays?

S. Datta (York Univ.) EECS 2011 W18 7 / 23



Hash Functions

Hash Tables

A hash table is a data structure that can be used to
make map operations faster. While worst-case is
still θ(n), average case is typically θ(1)

A hash table for a given key type consists of
Hash function h
Array (called table) of size N

the goal is to store item (k , v) at index i = h(k) of
the hash table where h() is a hash function whose
input is the key of the element and output is a
location in the hash table

S. Datta (York Univ.) EECS 2011 W18 8 / 23



Hash Functions

Hash Functions

A hash function h maps keys of a given type to
integers in a fixed interval [0,N − 1],
E.g., h(k) = k mod N is a hash function for integer
keys. The size N is usually chosen to be a prime.

Hash functions are many-to-one, there can be
collisions

Since different keys map to the same location, need
to resolve collisions carefully

S. Datta (York Univ.) EECS 2011 W18 9 / 23



Hash Functions

Hash Functions - examples

h2(y) = y mod N

Multiply, Add and Divide (MAD):
h2(y) = (ay + b) mod N , a, b non-negative
integers, and a mod N 6= 0

Integer cast: We reinterpret the bits of the key as
an integer

Component sum: partition the bits of the key into
components of fixed length (e.g., 16 or 32 bits) and
sum the components (ignoring overflows)

S. Datta (York Univ.) EECS 2011 W18 10 / 23



Hash Functions

Polynomial Hash Functions

Partition the key into fixed length (e.g., 8, 16 or 32
bits) chunks a0, a1, . . . , an−1. Fix a constant z > 1.

Evaluate (ignoring overflows)
p(z) = a0 + a1z + a2z

2 + . . . + an−1z
n−1

Especially suitable for strings

Horner’s rule for computing p(z) in θ(n) time
1 p0(z) = an−1
2 pi(z) = an−i−1 + zpi−1(z)(i = 1, 2, . . . , n − 1)
3 p(z) = pn−1(z)

S. Datta (York Univ.) EECS 2011 W18 11 / 23



Hash Functions

Clustering Behaviour of Hash Functions

Desirable in some applications: like searching with
approximate keys.

Undesirable in some scenarios: e.g. cryptographic
has functions

S. Datta (York Univ.) EECS 2011 W18 12 / 23



Hash Functions Handling collisions

Handling Collisions - Techniques

Chaining

Open addressing with Linear Probing

Open addressing with Double Hashing

S. Datta (York Univ.) EECS 2011 W18 13 / 23



Hash Functions Handling collisions

Chaining

A new data structure at each location

Often a linked list

For linked list based chaining:

Worst case time for insert: θ(1)

Worst case time for delete, search: Ω(n)

In practice, the array size can be chosen to tradeoff
array initialization costs with search/delete costs

S. Datta (York Univ.) EECS 2011 W18 14 / 23



Hash Functions Handling collisions

Open Addressing with Linear Probing

the colliding item is placed in another cell of the table

Linear Probing: colliding item in the next
(circularly) available table cell

Each table cell inspected is referred to as a “probe”

Colliding items lump together, so that future
collisions cause a longer sequence of probes

S. Datta (York Univ.) EECS 2011 W18 15 / 23



Hash Functions Handling collisions

Linear Probing (h(k) = k mod 7)

S. Datta (York Univ.) EECS 2011 W18 16 / 23



Hash Functions Handling collisions

Linear Probing - Details

get(k)

start at cell h(k)
probe consecutive
locations until

An item with key k
is found, or
An empty cell is
found, or N cells
have been
unsuccessfully
probed

Insertions and deletions:
problem

Solution: introduce a special
object, called DEFUNCT, to
replace deleted elements

S. Datta (York Univ.) EECS 2011 W18 17 / 23



Hash Functions Handling collisions

Linear Probing: Add and Remove

remove(k)

search for an entry
with key k
If such an entry
(k , o) is found,
replace it with the
special item
DEFUNCT and
return o
Else, return null

put(k , o)

throw an exception if the
table is full

start at cell h(k)
probe consecutive cells
until

A cell i is found that is
either empty or stores
DEFUNCT, or
N cells have been
unsuccessfully probed

We store (k , o) in cell i

S. Datta (York Univ.) EECS 2011 W18 18 / 23



Hash Functions Handling collisions

Open addressing with Double Hashing

Suppose that i = h(k) leads to a collision.

uses a secondary hash function h′(k) in addition to
the primary hash function h(x)

iteratively probe the locations (i + jh′(k)) mod N
for j = 0, 1, . . . ,N − 1

h′(k) cannot have zero values

Choose N to be prime. Common choices for h′(k):
h′(k) = q − k mod q, where
q < N and q is prime

The possible values for h′(k) are 1, 2, . . . , q

S. Datta (York Univ.) EECS 2011 W18 19 / 23



Hash Functions Performance of Hashing Schemes

Performance of Hashing Schemes

In the worst case, searches, insertions and removals
on a hash table take Ω(n) time
worst case: all keys collide
The load factor λ = n/N affects the performance of
a hash table

chaining: performance is typically good for λ < 0.9
open addressing: performance is usually good for λ < 0.5
java.util.HashMap maintains λ < 0.75

Open addressing can be more memory efficient than
separate chaining
However, chaining is typically as fast or faster than
open addressing.

S. Datta (York Univ.) EECS 2011 W18 20 / 23



Hash Functions Applications of Hashing

Application of Hashing

small databases

compilers

browser caches

Finding Set Intersection
Complexity: Average case θ(m + n)

Alternative: Merge sort modification

S. Datta (York Univ.) EECS 2011 W18 21 / 23



Hash Functions Rehashing

Rehashing

When the load factor λ exceeds threshold, the table
must be rehashed.

A larger table is allocated (typically at least double
the size)

A new hash function is defined.

All existing entries are copied to this new table
using the new hash function.

S. Datta (York Univ.) EECS 2011 W18 22 / 23



Aside

Cryptographic Hash Functions

Used for digital signatures. A digital signature must
depend on the content being signed, and

be short

Must be hard to forge

Demo at www.hashemall.com

S. Datta (York Univ.) EECS 2011 W18 23 / 23

www.hashemall.com

	Hashing - Uses
	Hash Functions
	Handling collisions
	Performance of Hashing Schemes
	Applications of Hashing 
	Rehashing 

	Aside

