EECS 2011 M:

Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18

1/25

http://www.eecs.yorku.ca/course/2011M

Trees

Ch. 8

@ General and Binary Trees

@ Tree Traversal

@ Related topics:

e Heaps Ch 9.3
@ Search Trees Ch 11.1
e Height Balanced Search Trees Ch 11.2 - 11.6

Note: Some slides in this presentation have been
adapted from the authors’ slides.

S. Datta (York Univ.) EECS 2011 W18 2/ 25

From https:

//upload.wikimedia.org/wikipedia/commons/f/£3/Phylogenetic_tree_of _Theropods_respiratory_system_01.JPG

https://upload.wikimedia.org/wikipedia/commons/f/f3/Phylogenetic_tree_of_Theropods_respiratory_system_01.JPG
https://upload.wikimedia.org/wikipedia/commons/f/f3/Phylogenetic_tree_of_Theropods_respiratory_system_01.JPG

T
Trees - 2

Clustered Iris data set
(the labels give the true flower species)

By Talgalili - Own work, CC BY-SA 4.0,

httis ://commons.wikimedia. ori/ w/index. ihi?curid=47743417

https://commons.wikimedia.org/w/index.php?curid=47743417

Trees -

3

wirus infects
a file

— 5

Trees

VIFUS FUR @s an VIFUS FUR as
administrator normal user

5 3

L_____W

Wirus
exploits
root hale

WirUs run Other
by an infected
admin programs

User downloads
and runs infected
naked binary

—1

¥

Other infected
programs

virus infects
install package

Admin downloads
and runs infected

naked binary

//upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Attack_tree_virus.png/350px-Attack_tree_virus.png

S. Datta (York Univ.)

EECS 2011 W18

https:

5/25

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Attack_tree_virus.png/350px-Attack_tree_virus.png
https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Attack_tree_virus.png/350px-Attack_tree_virus.png

Trees

Trees - 4

lectures

LLoMive exere fgog

i,
=) Q‘%
e Analysis &
bl Application
case studies
questions
pest®

https://articulate-heroes.s3.amazonaws.com/uploads/rte/jfdncskl_Liliana-Cotoara-Blooms-Taxonomy.png

S. Datta (York Univ.) EECS 2011 W18 6 /25

https://articulate-heroes.s3.amazonaws.com/uploads/rte/jfdncskl_Liliana-Cotoara-Blooms-Taxonomy.png

Trees

Trees - 5

@ An abstract model of a
hierarchical structure

Computers”R”Us

@ consists of nodes with
a parent-child relation
@ Applications:
e Organization charts
e File systems

@ Programmin
.g g [Europe] [XJ;] Canada
environments

[Manufacturing] [R&D]

[International] [Laptops] [Desktops]

@ May be rooted or
unrooted

S. Datta (York Univ.) EECS 2011 W18 7/25

Trees

Rooted Trees - Terminology

Root: node without parent
Internal node: node with at least one child
External node (a.k.a. leaf): node without children

Ancestors of a node: parent, grandparent,
grand-grandparent, etc.
Depth of a node: no. of ancestors (depth(root) = 0)

@ Height of a tree: maximum depth of any node
@ Descendant of a node: child, grandchild,

grand-grandchild, etc.
Subtree: tree consisting of a node and its
descendants

S. Datta (York Univ.) EECS 2011 W18 8/25

Trees

Position - ADT

@ Models the notion of place within a data structure
where a single object is stored

@ It gives a unified view of diverse ways of storing
data, such as

e a cell of an array
@ a node of a linked list
@ a node of a tree

Just one method:
object p.element(): returns the element stored at

the position p.

S. Datta (York Univ.) EECS 2011 W18

9/25

Trees

Trees - ADT

Uses positions to abstract nodes

@ Generic methods:

e integer size() @ Query methods:
@ boolean isEmpty() e boolean isInternal(p)
o lterator iterator() e boolean isExternal(p)
e lIterable positions() e boolean isRoot(p)
@ Accessor methods: e Update method: set(p, e)
@ position root() e replaces the element at
@ position parent(p) position p with element e
e lterable children(p) @ returns the previously
@ integer stored element.

numChildren(p)

S. Datta (York Univ.) EECS 2011 W18 10 / 25

Trees

Binary Trees

@ Each internal node has at most two children
(exactly two for proper binary trees)
@ The children of a node are an ordered pair: left

child and right child
@ Alternative recursive definition: a binary tree
@ consists of a single node, or

e has a root with an ordered pair of children, each of
which is a binary tree
Applications:
@ arithmetic expressions
@ decision processes
@ searching

S. Datta (York Univ.) EECS 2011 W18 11/ 25

Trees

Properties of Proper Binary Trees

Each node has 0 or 2 children.

@ n: number of nodes

@ e: number of
external nodes
(leaves)

@ /: number of
internal nodes

@ h: height

S. Datta (York Univ.)

eece—=/+1
e n=2e—1
e h< |

e h<(n—-1)/2

@ e<2h

@ h>log,e

@ h>logy(n+1)—1

EECS 2011 W18

12 /25

Trees

Binary Tree ADT

@ Extends the Tree ADT,

e Additional methods:
e Position left(p)
e Position right(p)
@ boolean hasLeft(p)
@ boolean hasRight(p)
@ Update methods may be defined by data structures

implementing the BinaryTree ADT

S. Datta (York Univ.) EECS 2011 W18 13/ 25

Trees Tree Traversals

Tree Traversals

e Different ways of exploring and enumerating the
nodes

@ Each traversal is useful in some applications

S. Datta (York Univ.) EECS 2011 W18 14 / 25

Trees Tree Traversals

Pre-order Traversal

@ a node is visited before
its descendants

Algorithm preOrder(v)
if (v != null)

visit(v) !

for each child w of v+

preOrder (w) "-;,-"" T, N

From https://commons.wikimedia.org/w/index.php?curid=10616003

S. Datta (York Univ.) EECS 2011 W18 15/ 25

https://commons.wikimedia.org/w/index.php?curid=10616003

Trees Tree Traversals

Pre-order Traversal - Application

Print a structured document

9

References

1. Motivations

3 4 6 7 8
. 2.1 Stock 2.2 Ponzi 2.3 Bank
[1.1 Greed] [1.2 Avidity] [Fraud] Scheme] [Robbery

S. Datta (York Univ.) EECS 2011 W18 16 / 25

Trees Tree Traversals

Post-order Traversal

@ a node is visited after
its descendants

Algorithm postOrder(v)
if (v != null) ;
for each child w of v-
postOrder (w)
visit(v)

https://commons.wikimedia.org/w/index.php?curid=10616033

S. Datta (York Univ.) EECS 2011 W18 17 / 25

https://commons.wikimedia.org/w/index.php?curid=10616033

Trees Tree Traversals

Post-order Traversal - Application

Compute space used by files in a directory and its
subdirectories

homeworks/

1 2 4

hlc.doc hlnc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K

S. Datta (York Univ.) EECS 2011 W18 18 / 25

Trees Tree Traversals

In-order Traversal (Binary trees only)

@ a node is visited after its
left subtree and before its
right subtree

Algorithm inOrder(v)
if (v != null)
inOrder (left (v))
visit(v)
inOrder (right (v))

From https:

//commons.wikimedia.org/w/index.php?curid=10616018

S. Datta (York Univ.) EECS 2011 W18 19 /25

https://commons.wikimedia.org/w/index.php?curid=10616018
https://commons.wikimedia.org/w/index.php?curid=10616018

Trees Tree Traversals

In-order Traversal - Application

Draw a binary tree:
x(v) = in-order rank of v
y(v) = depth of v

S. Datta (York Univ.) EECS 2011 W18 20 / 25

Trees Tree Traversals

Arithmetic Expression Tree

@ Binary tree associated
with an arithmetic
expression

@ internal nodes: operators
@ external nodes: operands

@ Example: arithmetic
expression tree for the
expression

(2x(a—1)+(3x b))

S. Datta (York Univ.) EECS 2011 W18 21/ 25

Trees Tree Traversals

Printing an Arithmetic Expression Tree

Specialization of an in-order traversal

Algorithm printExpression(v)
if left (v) != null
print (" (")
inOrder (left(v)
print(v.element ())
I
v

if right(v) !'= nul

print(")")
tree for the expression
(2x(a—1))+(3x b))

S. Datta (York Univ.) EECS 2011 W18 22/ 25

Trees Tree Traversals

Evaluating an Arithmetic Expression Tree

Specialization of a post-order traversal

@ recursively evaluate
subtrees, by combining
the values of the subtrees

Algorithm evalExpr(v)
if isExternal (v)
return v.element ()

else
X = evaIExpr(Ifaft(v))
y = evalExpr(right(v)) {ree for the expression
op = operator at v
return x op vy (2x(a—1))+(3x b))

S. Datta (York Univ.) EECS 2011 W18 23/ 25

Implementation Issues

Array-based Tree Implementation

0

Nodes are stored in an array A,
e.g., v is stored at A[rank(v)]
@ rank(root) =0

@ rank of left child of node /
is2i+1

@ rank of right child of node
iis 2i + 2

S. Datta (York Univ.) EECS 2011 W18

24 / 25

Implementation Issues

Tree Implementation

Array-based Linked structure
@ Lower memory @ Requires explicit
requirements: Parent and representation of 3
children are implicitly links per position:
represented parent, left child,

e Memory requirements right child
determined by tree height @ Data structure grows

- very inefficient for sparse as needed — no
trees wasted space.

S. Datta (York Univ.) EECS 2011 W18 25 / 25

	Trees
	Tree Traversals

	Implementation Issues

