
EECS 2011 M:
Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18 1 / 33

http://www.eecs.yorku.ca/course/2011M


Binary Search Trees

Binary Search Trees

Ch. 11.1-11.4

Motivation

Binary Search Trees

Increasing efficiency: height-balanced binary trees

Note: Some slides in this presentation have been
adapted from the author’s slides.

S. Datta (York Univ.) EECS 2011 W18 2 / 33



Binary Search Trees Ordered Maps

Ordered Maps

Consider the problem of storing a map where

Keys are assumed to come from a total order

Items are stored in order by their keys

This allows us to support nearest neighbor queries:
Item with largest key less than or equal to k
Item with smallest key greater than or equal to k

What is a good data structure for supporting such
queries?

S. Datta (York Univ.) EECS 2011 W18 3 / 33



Binary Search Trees Ordered Maps

Array Implementation: Lookup Tables

aka Search Tables

Items stored in an array-based sequence, sorted by
key (using an appropriate comparator)
Binary search can perform nearest neighbor queries
on an ordered map that is implemented with an
array, sorted by key

at each step, the number of candidate items is halved
terminates after O(log n) steps

Insertion, Removal: Ω(n) time in the worst case,
because of shifting involved

OK for small maps, or when insertions, deletions are rare
S. Datta (York Univ.) EECS 2011 W18 4 / 33



Binary Search Trees Binary Search Trees

Binary Search Trees (BST)

More efficient alternative to lookup tables
A BST is a binary tree that

stores keys (or key-value entries) at its internal
nodes and satisfies the following property:
Let u, v , and w be three nodes such that u is in the
left subtree of v and w is in the right subtree of v.
Then key(u) ≤ key(v) ≤ key(w)

External nodes do not store items

An in-order traversal of a BST lists the keys in
increasing order

S. Datta (York Univ.) EECS 2011 W18 5 / 33



Binary Search Trees Binary Search Trees

Binary Search Trees (BST) - Example

Leaf nodes are not shown

Public Domain, https://commons.wikimedia.org/w/index.php?curid=488330

S. Datta (York Univ.) EECS 2011 W18 6 / 33

https://commons.wikimedia.org/w/index.php?curid=488330


Binary Search Trees Binary Search Trees

Binary Search Trees (BST) - Searching

Note the similarity with binary search (hence the name)

S. Datta (York Univ.) EECS 2011 W18 7 / 33



Binary Search Trees Binary Search Trees

Binary Search Trees (BST) - Insertion

S. Datta (York Univ.) EECS 2011 W18 8 / 33



Binary Search Trees Binary Search Trees

Binary Search Trees (BST) - Deletion 1

S. Datta (York Univ.) EECS 2011 W18 9 / 33



Binary Search Trees Binary Search Trees

Binary Search Trees (BST) - Deletion 2

p has 2 internal children

we find the internal
node r that follows p in
an in-order traversal
we copy the entry
stored at r into p, and
delete the node at
position r (which
cannot have a right
child) using the
previous method

S. Datta (York Univ.) EECS 2011 W18 10 / 33



Binary Search Trees Binary Search Trees

Binary Search Trees (BST) - Deletion 3

Can also use the node that precedes p: remove(8)

S. Datta (York Univ.) EECS 2011 W18 11 / 33



Binary Search Trees Binary Search Trees

Binary Search Trees (BST) - Performance

the space used is θ(n)

methods get, put and remove take θ(h) time

The height h is Ω(n) in the worst case and O(logn)
in the best case

Easy way to generate a skewed tree: insert in sorted
order

S. Datta (York Univ.) EECS 2011 W18 12 / 33



Binary Search Trees Height-balanced Binary Search Trees

Height-balanced Binary Search Trees

Q: Can this be made more balanced?
A: Yes. Many different algorithms exist. We will look at

AVL trees

Splay Trees

S. Datta (York Univ.) EECS 2011 W18 13 / 33



Binary Search Trees Height-balanced Binary Search Trees

General Rebalancing Techniques - 1

S. Datta (York Univ.) EECS 2011 W18 14 / 33



Binary Search Trees Height-balanced Binary Search Trees

General Rebalancing Techniques - 2

S. Datta (York Univ.) EECS 2011 W18 15 / 33



Binary Search Trees Height-balanced Binary Search Trees

AVL Trees

An AVL Tree is a BST such that for every internal node
v , the heights of the children of v can differ by at most 1

S. Datta (York Univ.) EECS 2011 W18 16 / 33



Binary Search Trees Height-balanced Binary Search Trees

Height of an AVL Tree in O log n)

Proof (by induction). bound n(h): the minimum number
of internal nodes of an AVL tree of height h.

We see that n(1) = 1 and n(2) = 2

For n > 2, an AVL tree of height h contains the
root node, one AVL subtree of height h − 1 and
another of height h − 2.
That is, n(h) = 1 + n(h − 1) + n(h − 2)

Since n(h− 1) > n(h− 2), we get n(h) > 2n(h− 2)

Solving the base case we get: n(h) > 2h/2−1

Taking logs: h < 2 lg n(h) + 2, so h = O(log n)

S. Datta (York Univ.) EECS 2011 W18 17 / 33



Binary Search Trees Height-balanced Binary Search Trees

AVL Tree: Insertion

Insertion is like that in any BST

However, this may make the tree unbalanced

S. Datta (York Univ.) EECS 2011 W18 18 / 33



Binary Search Trees Height-balanced Binary Search Trees

AVL Tree: Balancing After Insertion

Tri-node restructuring

traverse toward the
root until an
imbalance is
discovered
Identify x , y , z such
that

y : high sibling
x : high child of y
z : parent of y

S. Datta (York Univ.) EECS 2011 W18 19 / 33



Binary Search Trees Height-balanced Binary Search Trees

AVL Tree: Balancing After Insertion - 2

Can we stop here? Yes, because

The tree was balanced before the insertion

Insertion raised the height of the subtree by 1

Rebalancing lowered the height of the subtree by 1

Thus the whole tree is still balanced

One restructuring is enough

S. Datta (York Univ.) EECS 2011 W18 20 / 33



Binary Search Trees Height-balanced Binary Search Trees

AVL Tree: Deletion

delete(32)

Deletion is like that in any BST

However, this may make the tree unbalanced

S. Datta (York Univ.) EECS 2011 W18 21 / 33



Binary Search Trees Height-balanced Binary Search Trees

AVL Tree: Balancing After Deletion

Let z be the first unbalanced ancestor of w , y be
the child of z with the larger height, and let x be
the child of y with the larger height

perform trinode restructuring to restore balance at z

check for balance all the way to the root

S. Datta (York Univ.) EECS 2011 W18 22 / 33



Binary Search Trees Height-balanced Binary Search Trees

AVL Tree: Balancing After Deletion - 2

Can we stop after one restructuring? No, because

trinode restructuring may reduce the height of the
subtree, causing another imbalance further up the
tree

Thus this search and repair process must be
repeated in the worst case until we reach the root

Ω(log n) balancing moves may be needed

S. Datta (York Univ.) EECS 2011 W18 23 / 33



Binary Search Trees Height-balanced Binary Search Trees

AVL Tree: Performance

For a n item tree,

The tree uses θ(n) space

A single restructuring takes O(1) time using a
linked-structure binary tree

Searching takes θ(log n) time

Insertion takes θ(log n) time
initial find is θ(log n)
restructuring up the tree, maintaining heights is θ(log n)

Removal takes θ(log n) time
initial find is θ(log n)
restructuring up the tree, maintaining heights is θ(log n)

S. Datta (York Univ.) EECS 2011 W18 24 / 33



Binary Search Trees Height-balanced Binary Search Trees

Splay Trees

Self-balancing BST [D. Sleator and R. Tarjan]

Allows quick access to recently accessed elements

Bad: worst-case Ω(n) for one operation

Good: guaranteed amortized O(log n) performance

Often perform better than other BSTs in practice

Used in the gcc compiler, GNU C++ library, the
most popular implementation of Unix malloc, Linux
loadable kernel modules

These slides are adapted from Prof Elder’s slides

S. Datta (York Univ.) EECS 2011 W18 25 / 33



Binary Search Trees Height-balanced Binary Search Trees

Splay Trees - 2

Still BSTs – same insertion, deletion techniques

each BST operation (find, insert, remove) is
augmented with a splay operation

Splaying is an operation performed on a node that
iteratively moves the node to the root of the tree

recently searched and inserted elements are near the
top of the tree, for quick access

S. Datta (York Univ.) EECS 2011 W18 26 / 33



Binary Search Trees Height-balanced Binary Search Trees

Splay Operation

Each splay operation on a node consists of a
sequence of splay steps

Each splay step moves the node up toward the root
by 1 or 2 levels

There are 3 kinds of steps:
Zig-Zig
Zig-Zag
Zig

These steps are iterated until the node is moved to
the root.

S. Datta (York Univ.) EECS 2011 W18 27 / 33



Binary Search Trees Height-balanced Binary Search Trees

Zig-Zig

Performed when the node x forms a linear chain with its
parent and grandparent, i.e., right-right or left-left

S. Datta (York Univ.) EECS 2011 W18 28 / 33



Binary Search Trees Height-balanced Binary Search Trees

Zig-Zag

Performed when the node x forms a non-linear chain with
its parent and grandparent, i.e., right-left or left-right

S. Datta (York Univ.) EECS 2011 W18 29 / 33



Binary Search Trees Height-balanced Binary Search Trees

Zig

Performed when the node x has no grandparent, i.e., its
parent is the root

S. Datta (York Univ.) EECS 2011 W18 30 / 33



Binary Search Trees Height-balanced Binary Search Trees

Which Nodes are Splayed?

find:
if key found, use that node
else, use parent of external node where search terminated

insert: use the new node containing the entry
inserted

delete: use the parent of the internal node w that
was actually removed from the tree. (If the node
with key k had two internal children, this is the
parent of the node it was swapped with.)

S. Datta (York Univ.) EECS 2011 W18 31 / 33



Binary Search Trees Height-balanced Binary Search Trees

Splay Trees: Performance

Worst-case Ω(n) operation, e.g.,
Find all elements in sorted order
This will make the tree a left linear chain of height n,
with the smallest element at the bottom
Subsequent search for the smallest element will be Ω(n)

Average-case is O(log n): Advanced use of
amortized analysis
Operations on more frequently-accessed entries are
faster. Given a sequence of m operations on an
initially empty tree, the running time to access entry
i is: O(logm/f (i)), where f (i) is the number of
times entry i is accessed.

S. Datta (York Univ.) EECS 2011 W18 32 / 33



Binary Search Trees Height-balanced Binary Search Trees

Other Height-Balanced Trees

(2, 4) Trees
These are multi-way search trees (not binary trees) in
which internal nodes have between 2 and 4 children
Have the property that all external nodes have exactly
the same depth
Worst-case O(log n) operations
Somewhat complicated to implement

Red-Black Trees
Binary search trees
Worst-case O(log n) operations
Somewhat easier to implement
Requires only O(1) structural changes per update

S. Datta (York Univ.) EECS 2011 W18 33 / 33


	Binary Search Trees
	Ordered Maps
	Binary Search Trees
	Height-balanced Binary Search Trees


