EECS 2011 M:

Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18

1/33


http://www.eecs.yorku.ca/course/2011M

Binary Search Trees

Binary Search Trees

Ch. 11.1-11.4
@ Motivation

@ Binary Search Trees

@ Increasing efficiency: height-balanced binary trees

Note: Some slides in this presentation have been
adapted from the author’s slides.

S. Datta (York Univ.) EECS 2011 W18 2/33



Binary Search Trees  Ordered Maps

Ordered Maps

Consider the problem of storing a map where
@ Keys are assumed to come from a total order
@ ltems are stored in order by their keys

@ This allows us to support nearest neighbor queries:

e Item with largest key less than or equal to k
@ Item with smallest key greater than or equal to k

What is a good data structure for supporting such
queries?

S. Datta (York Univ.) EECS 2011 W18 3/33



Binary Search Trees  Ordered Maps

Array Implementation: Lookup Tables

aka Search Tables

@ |tems stored in an array-based sequence, sorted by
key (using an appropriate comparator)

@ Binary search can perform nearest neighbor queries
on an ordered map that is implemented with an
array, sorted by key

@ at each step, the number of candidate items is halved
e terminates after O(log n) steps

@ Insertion, Removal: Q(n) time in the worst case,
because of shifting involved

OK for small maps, or when insertions, deletions are rare

S. Datta (York Univ.) EECS 2011 W18 4/33



Binary Search Trees  Binary Search Trees

Binary Search Trees (BST)

More efficient alternative to lookup tables
A BST is a binary tree that

@ stores keys (or key-value entries) at its internal
nodes and satisfies the following property:
Let u, v, and w be three nodes such that v is in the
left subtree of v and w is in the right subtree of v.
Then key(u) < key(v) < key(w)

@ External nodes do not store items

@ An in-order traversal of a BST lists the keys in
increasing order

S. Datta (York Univ.) EECS 2011 W18 5/33



Binary Search Trees  Binary Search Trees

Binary Search Trees (BST) - Example

Leaf nodes are not shown

Public Domain, https://commons.wikimedia.org/w/index.php?curid=488330

S. Datta (York Univ.) EECS 2011 W18

6/33


https://commons.wikimedia.org/w/index.php?curid=488330

Binary Search Trees  Binary Search Trees

Binary Search Trees (BST) - Searching

Note the similarity with binary search (hence the name)

S. Datta (York Univ.) EECS 2011 W18 7/33



Binary Search Trees  Binary Search Trees

Binary Search Trees (BST) - Insertion

S. Datta (York Univ.) EECS 2011 W18 8 /33



Binary Search Trees  Binary Search Trees

Binary Search Trees (BST) - Deletion 1

S. Datta (York Univ.) EECS 2011 W18 9 /33



Binary Search Trees  Binary Search Trees

Binary Search Trees (BST) - Deletion 2

p has 2 internal children

@ we find the internal
node r that follows p in
an in-order traversal

@ we copy the entry
stored at r into p, and
delete the node at
position r (which
cannot have a right
child) using the
previous method

S. Datta (York Univ.) EECS 2011 W18 10 / 33



Binary Search Trees  Binary Search Trees

Binary Search Trees (BST) - Deletion 3

Can also use the node that precedes p: remove(8)

S. Datta (York Univ.) EECS 2011 W18 11/ 33



Binary Search Trees  Binary Search Trees

Binary Search Trees (BST) - Performance

@ the space used is 6(n)
@ methods get, put and remove take 0(h) time

@ The height his Q(n) in the worst case and O(logn)
in the best case

e Easy way to generate a skewed tree: insert in sorted
order

S. Datta (York Univ.) EECS 2011 W18 12 /33



Binary Search Trees  Height-balanced Binary Search Trees

Height-balanced Binary Search Trees

Q: Can this be made more balanced?
A: Yes. Many different algorithms exist. We will look at

@ AVL trees

@ Splay Trees

S. Datta (York Univ.) EECS 2011 W18 13 /33



Binary Search Trees  Height-balanced Binary Search Trees

General Rebalancing Techniques - 1

S. Datta (York Univ.) EECS 2011 W18 14 /33



Binary Search Trees  Height-balanced Binary Search Trees

General Rebalancing Techniques - 2

S. Datta (York Univ.) EECS 2011 W18 15/ 33



Binary Search Trees  Height-balanced Binary Search Trees

AVL Trees

An AVL Tree is a BST such that for every internal node
v, the heights of the children of v can differ by at most 1

S. Datta (York Univ.) EECS 2011 W18 16 / 33



Binary Search Trees  Height-balanced Binary Search Trees

Height of an AVL Tree in O log n)

Proof (by induction). bound n(h): the minimum number
of internal nodes of an AVL tree of height h.

@ We see that n(1) =1 and n(2) =2

@ For n > 2, an AVL tree of height h contains the
root node, one AVL subtree of height h — 1 and
another of height h — 2.

That is, n(h) =1+ n(h—1)+ n(h —2)

@ Since n(h—1) > n(h—2), we get n(h) > 2n(h — 2)
e Solving the base case we get: n(h) > 2/271

e Taking logs: h < 2lgn(h) + 2, so h = O(log n)

S. Datta (York Univ.) EECS 2011 W18 17 / 33



Binary Search Trees  Height-balanced Binary Search Trees

AVL Tree: Insertion

@ Insertion is like that in any BST
@ However, this may make the tree unbalanced

S. Datta (York Univ.) EECS 2011 W18

18 / 33



Binary Search Trees  Height-balanced Binary Search Trees

AVL Tree: Balancing After Insertion

Tri-node restructuring

@ traverse toward the
root until an
imbalance is

discovered
@ ldentify x, y, z such
that
@ y : high sibling
@ x : high child of y
@ z: parent of y

S. Datta (York Univ.) EECS 2011 W18

19 /33



Binary Search Trees  Height-balanced Binary Search Trees

AVL Tree: Balancing After Insertion - 2

Can we stop here? Yes, because
@ The tree was balanced before the insertion

@ Insertion raised the height of the subtree by 1
@ Rebalancing lowered the height of the subtree by 1

@ T hus the whole tree is still balanced

One restructuring is enough

S. Datta (York Univ.) EECS 2011 W18 20 / 33



Binary Search Trees  Height-balanced Binary Search Trees

AVL Tree: Deletion

delete(32)
@ Deletion is like that in any BST

@ However, this may make the tree unbalanced

S. Datta (York Univ.) EECS 2011 W18 21/ 33



Binary Search Trees  Height-balanced Binary Search Trees

AVL Tree: Balancing After Deletion

@ Let z be the first unbalanced ancestor of w, y be
the child of z with the larger height, and let x be
the child of y with the larger height

@ perform trinode restructuring to restore balance at z

@ check for balance all the way to the root

S. Datta (York Univ.) EECS 2011 W18 22 /33



Binary Search Trees  Height-balanced Binary Search Trees

AVL Tree: Balancing After Deletion - 2

Can we stop after one restructuring? No, because

@ trinode restructuring may reduce the height of the
subtree, causing another imbalance further up the
tree

@ Thus this search and repair process must be
repeated in the worst case until we reach the root

e Q(log n) balancing moves may be needed

S. Datta (York Univ.) EECS 2011 W18 23 /33



Binary Search Trees  Height-balanced Binary Search Trees

AVL Tree: Performance

For a n item tree,
@ The tree uses 6(n) space

@ A single restructuring takes O(1) time using a
linked-structure binary tree

@ Searching takes f(log n) time

@ Insertion takes 6(log n) time

e initial find is §(log n)

@ restructuring up the tree, maintaining heights is 6(log n)
@ Removal takes 6(log n) time

e initial find is §(log n)

@ restructuring up the tree, maintaining heights is 6(log n)

S. Datta (York Univ.) EECS 2011 W18 24/ 33



Binary Search Trees  Height-balanced Binary Search Trees

Splay Trees

@ Self-balancing BST [D. Sleator and R. Tarjan]

@ Allows quick access to recently accessed elements
@ Bad: worst-case Q(n) for one operation

@ Good: guaranteed amortized O(log n) performance
@ Often perform better than other BSTs in practice

@ Used in the gcc compiler, GNU C++ library, the
most popular implementation of Unix malloc, Linux
loadable kernel modules

These slides are adapted from Prof Elder's slides

S. Datta (York Univ.) EECS 2011 W18 25 / 33



Binary Search Trees  Height-balanced Binary Search Trees

Splay Trees - 2

@ Still BSTs — same insertion, deletion techniques

@ each BST operation (find, insert, remove) is
augmented with a splay operation

@ Splaying is an operation performed on a node that
iteratively moves the node to the root of the tree

@ recently searched and inserted elements are near the
top of the tree, for quick access

S. Datta (York Univ.) EECS 2011 W18 26 / 33



Binary Search Trees  Height-balanced Binary Search Trees

Splay Operation

@ Each splay operation on a node consists of a
sequence of splay steps

@ Each splay step moves the node up toward the root
by 1 or 2 levels

@ There are 3 kinds of steps:
o Zig-Zig
o Zig-Zag
o Zig
@ These steps are iterated until the node is moved to
the root.

S. Datta (York Univ.) EECS 2011 W18 27 / 33



Binary Search Trees  Height-balanced Binary Search Trees

Lig-Zig

Performed when the node x forms a linear chain with its
parent and grandparent, i.e., right-right or left-left

e
A AYA

S. Datta (York Univ.) EECS 2011 W18 28 / 33




Binary Search Trees  Height-balanced Binary Search Trees

Lig-Zag

Performed when the node x forms a non-linear chain with
its parent and grandparent, i.e., right-left or left-right

. ()
AAA

S. Datta (York Univ.) EECS 2011 W18 29 / 33




Binary Search Trees  Height-balanced Binary Search Trees

Lig

Performed when the node x has no grandparent, i.e., its
parent is the root

° zig

—»

AYA

S. Datta (York Univ.) EECS 2011 W18 30 /33




Binary Search Trees  Height-balanced Binary Search Trees

Which Nodes are Splayed?

e find:

e if key found, use that node
@ else, use parent of external node where search terminated

@ insert: use the new node containing the entry
inserted

@ delete: use the parent of the internal node w that
was actually removed from the tree. (If the node
with key k had two internal children, this is the
parent of the node it was swapped with.)

S. Datta (York Univ.) EECS 2011 W18 31/ 33



Binary Search Trees  Height-balanced Binary Search Trees

Splay Trees: Performance

e Worst-case (n) operation, e.g.,
o Find all elements in sorted order
@ This will make the tree a left linear chain of height n,
with the smallest element at the bottom
@ Subsequent search for the smallest element will be Q(n)

@ Average-case is O(log n): Advanced use of
amortized analysis

@ Operations on more frequently-accessed entries are
faster. Given a sequence of m operations on an
initially empty tree, the running time to access entry
iis: O(log m/f(i)), where f(i) is the number of
times entry / is accessed.

S. Datta (York Univ.) EECS 2011 W18 32 /33



Binary Search Trees  Height-balanced Binary Search Trees

Other Height-Balanced Trees

@ (2,4) Trees
@ These are multi-way search trees (not binary trees) in
which internal nodes have between 2 and 4 children
@ Have the property that all external nodes have exactly
the same depth
e Worst-case O(log n) operations
@ Somewhat complicated to implement

@ Red-Black Trees

e Binary search trees

e Worst-case O(log n) operations

@ Somewhat easier to implement

e Requires only O(1) structural changes per update

S. Datta (York Univ.) EECS 2011 W18 33 /33



	Binary Search Trees
	Ordered Maps
	Binary Search Trees
	Height-balanced Binary Search Trees


